Development and validation of a clinical prediction model for post thrombotic syndrome following anticoagulant therapy for acute deep venous thrombosis

医学 深静脉 血栓后综合征 内科学 血栓形成 静脉血栓形成 临床试验 抗凝治疗
作者
Jiantao Zhang,Fan Ma,Jie Yao,Bin Hao,Huimin Xu,Xiaorong Guo,Hongxia Gao,Tao Yang
出处
期刊:Thrombosis Research [Elsevier]
卷期号:214: 68-75 被引量:6
标识
DOI:10.1016/j.thromres.2022.04.003
摘要

To identify independent prediction factors for post thrombotic syndrome (PTS) following acute deep vein thrombosis (DVT) and develop a clinical prediction model assessing the risk of PTS in individual patient.We prospectively recruited consecutive adult patients with acute DVT who were managed at Shanxi Bethune Hospital, China between June 2014 and December 2016. Investigator assessed PTS using the Villalta scale at 1, 6, 12, 18 and 24 months following diagnosis of DVT. Variable selection was performed by applying the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. Based on these data, we established a clinical prediction model for the development of PTS following DVT. The Bootstrap method was used for internal validation. During the process of model development, we re-collected the information of DVT patients from 2016 to 2017 for a temporal validation. The performance of the prediction model included discrimination and calibration, and clinical utility of prediction model was also evaluated using a decision curve analysis.A total of 808 consecutive patients with acute DVT were enrolled in the training and validation datasets, of which 540 patients were included in the training dataset for the development of prediction model and the other 268 patients were in the other dataset for temporal validation. Seventy-six patients in training dataset developed PTS. The prediction factors associated with PTS were ilio-femoral DVT (OR = 4.835, 95% CI: 2.471-9.463), active cancer (OR = 3.006, 95% CI: 1.404-6.435), history of chronic venous insufficiency (OR = 7.464, 95% CI: 3.568-15.616), previous venous thromboembolism (OR = 6.326, 95% CI: 2.872-13.932), and chronic kidney disease (OR = 9.916, 95% CI: 2.238-43.937), duration of compression therapy <6 months (OR = 2.894, 95% CI: 1.595-5.251). The c index of the prediction model was 0.825 (0.774-0.877), and the c index of internal validation and temporal verification were 0.816 and 0.773 (95% CI: 0.699-0.848), indicated that the prediction model had a good discrimination in predicting PTS risk following DVT. All the calibration curve showed the model had a good calibration. The decision curve analysis showed a better net benefit of prediction model predicting PTS risk within threshold probability ranged from 0% to 72% and 86% to 98% in training dataset, and 0% to 58% in the validation datasets.Our prediction model can accurately estimate the likelihood of PTS risk and identify high-risk patients who may develop PTS following DVT based on individual characteristics, but further external validation is still required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
免疫与代谢研究完成签到,获得积分10
2秒前
3秒前
任性的皮皮虾完成签到,获得积分10
3秒前
ll完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
FG发布了新的文献求助10
7秒前
李二二完成签到,获得积分10
7秒前
云_123完成签到,获得积分10
8秒前
ll发布了新的文献求助20
9秒前
轩仔发布了新的文献求助10
10秒前
王77完成签到,获得积分10
10秒前
小陈子完成签到,获得积分10
10秒前
李二二发布了新的文献求助10
11秒前
11秒前
yyw完成签到,获得积分10
11秒前
Milesma完成签到 ,获得积分10
13秒前
15秒前
小青柑发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
19秒前
852应助cc采纳,获得10
19秒前
19秒前
lcyxdsl发布了新的文献求助10
20秒前
Keyl发布了新的文献求助20
20秒前
搬砖少年的板砖完成签到,获得积分10
21秒前
果蝇宝宝完成签到,获得积分10
21秒前
小二郎应助jesuissi采纳,获得20
22秒前
Enma发布了新的文献求助50
23秒前
疯狂的珊发布了新的文献求助10
24秒前
小胖完成签到,获得积分10
24秒前
NexusExplorer应助歪瑞古德采纳,获得10
24秒前
24秒前
Ava应助小青柑采纳,获得10
27秒前
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141416
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802733
捐赠科研通 2448629
什么是DOI,文献DOI怎么找? 1302677
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237