已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative Method of Classification and Discrimination of a Porous Carbonate Reservoir Integrating K‐means Clustering and Bayesian Theory

聚类分析 贝叶斯概率 模式识别(心理学) 人工智能 计算机科学 类型(生物学) 数据挖掘 测井 统计 石油工程 数学 地质学 古生物学
作者
Xinxin Fang,Guotao Zhu,Yiming Yang,Fengling LI,Feng Hong
出处
期刊:Acta Geologica Sinica-english Edition [Wiley]
卷期号:97 (1): 176-189 被引量:4
标识
DOI:10.1111/1755-6724.14941
摘要

Abstract Reservoir classification is a key link in reservoir evaluation. However, traditional manual means are inefficient, subjective, and classification standards are not uniform. Therefore, taking the Mishrif Formation of the Western Iraq as an example, a new reservoir classification and discrimination method is established by using the K‐means clustering method and the Bayesian discrimination method. These methods are applied to non‐cored wells to calculate the discrimination accuracy of the reservoir type, and thus the main reasons for low accuracy of reservoir discrimination are clarified. The results show that the discrimination accuracy of reservoir type based on K‐means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data. The discrimination accuracy rate of Type I, Type II, and Type V reservoirs is found to be significantly higher than that of Type III and Type IV reservoirs using the method of combining K‐means clustering and Bayesian theory based on logging data. Although the recognition accuracy of the new methodology for the Type IV reservoir is low, with average accuracy the new method has reached more than 82% in the entire study area, which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满贞完成签到,获得积分10
1秒前
4秒前
华仔应助ttt采纳,获得10
5秒前
maox1aoxin应助tly采纳,获得30
5秒前
大个应助凶狠的鸵鸟采纳,获得10
5秒前
青枝完成签到,获得积分10
5秒前
大模型应助Yve采纳,获得10
7秒前
10秒前
11111发布了新的文献求助10
10秒前
11秒前
11秒前
13秒前
萤火虫发布了新的文献求助10
16秒前
bingbing发布了新的文献求助10
16秒前
凌小飞侠发布了新的文献求助10
17秒前
17秒前
wab完成签到,获得积分0
17秒前
Akim应助Zzz_Carlos采纳,获得10
18秒前
呦吼。。。完成签到,获得积分10
18秒前
20秒前
777发布了新的文献求助10
21秒前
秋裤批发完成签到 ,获得积分10
21秒前
善学以致用应助彩色小凡采纳,获得10
21秒前
乖乖完成签到,获得积分10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得20
21秒前
李健应助科研通管家采纳,获得30
21秒前
Jasper应助科研通管家采纳,获得10
22秒前
云墨完成签到 ,获得积分10
23秒前
777完成签到,获得积分20
28秒前
嘉心糖应助tanhaowen采纳,获得10
30秒前
31秒前
31秒前
别阻碍我做科研完成签到,获得积分10
34秒前
36秒前
彩色小凡发布了新的文献求助10
37秒前
SCT发布了新的文献求助10
39秒前
李健应助不准吃烤肉采纳,获得10
44秒前
52秒前
somls完成签到,获得积分10
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752