极限环
数学
李雅普诺夫指数
倍周期分岔
相图
吸引子
分叉理论的生物学应用
霍普夫分叉
分叉
鞍结分岔
分岔图
混乱的
数学分析
参数空间
常微分方程
相空间
干草叉分叉
应用数学
极限(数学)
微分方程
非线性系统
物理
计算机科学
几何学
量子力学
人工智能
热力学
作者
Haiying Liu,Hongli Yang,Nan Liu,Liangui Yang
标识
DOI:10.1142/s1793524522500395
摘要
In this paper, a dynamic model given by three-dimensional ordinary differential equations is studied to determine how the dynamics of tumor growth is controlled by some key parameters. By varying the competition coefficient between healthy host cells and tumor cells, a Hopf bifurcation occurs in this system, leading to the creation of a stable limit cycle. Through numerical analysis of the continuity of this limit cycle, we find that the cascade of period-doubling bifurcations leads to the generation of a chaotic attractor. Moreover, the region of attractors is shown in the parameter space. Numerical simulations, bifurcation diagrams, Lyapunov exponent graph and phase portraits permit to highlight the rich and complex phenomena presented by the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI