A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting

风速 天气研究与预报模式 希尔伯特-黄变换 数值天气预报 计算机科学 算法 风力发电 卷积神经网络 时间序列 模式(计算机接口) 人工智能 人工神经网络 气象学 机器学习 白噪声 工程类 物理 电气工程 操作系统 电信
作者
Peng Hu,Lihua Mi,Lian Shen,C.S. Cai,Yuchen Liu,Kai Li,Guoji Xu
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118777-118777 被引量:70
标识
DOI:10.1016/j.apenergy.2022.118777
摘要

The accuracy of the wind speed prediction is of crucial significance for the operation and dispatch of the power grid system reasonably. However, wind speed is so random and intermittent that the accuracy of wind speed prediction always remains unsatisfactory. Moreover, the coupling relationship between other meteorological variables and wind speed in the time and frequency domains has rarely been studied. Subsequently, a hybrid wind speed prediction model based on weather research and forecasting (WRF) simulation is proposed according to a multivariate data decomposition method and deep learning algorithm optimized by an attention mechanism and a grid search algorithm. Firstly, the WRF simulation is utilized to obtain the predicted wind speed and other meteorological variables are also extracted from WRF different domains. Furthermore, the pearson correlation coefficient (PCC) method is adopted to select principal meteorological variables as the input series. Additionally, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method decomposes input series and historical data into respective intrinsic mode functions (IMFs). Then, a new hybrid deep learning model, combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BLSTM) optimized via an attention mechanism (AM) and a grid search method (GS), is proposed to predict the error and correct the wind speed from WRF innermost domain. Finally, the validation case study is conducted to verify the effectiveness of the proposed model. The results indicate that the proposed model outperforms other comparative models in terms of single-step and multi-step wind speed prediction. Specifically, the values of the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE) are 0.1042 m/s, 4.63% and 0.1309 m/s after correction, decreased by 94.13%, 91.75% and 93.93%, respectively, compared to those without correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助超帅的怡采纳,获得10
刚刚
CHenGbr关注了科研通微信公众号
2秒前
可爱天川发布了新的文献求助10
3秒前
唐晓秦发布了新的文献求助10
3秒前
han发布了新的文献求助10
5秒前
打打应助山谷采纳,获得10
5秒前
邓佳鑫Alan应助silentforsure采纳,获得10
6秒前
DXDXJX完成签到,获得积分10
7秒前
8秒前
8秒前
Pytong完成签到,获得积分10
8秒前
10秒前
英俊的铭应助mbf采纳,获得10
11秒前
呐呐完成签到,获得积分10
12秒前
QDR发布了新的文献求助10
12秒前
王晓雪完成签到,获得积分10
13秒前
14秒前
七窍通了六窍完成签到 ,获得积分10
14秒前
科研通AI2S应助可爱天川采纳,获得10
15秒前
丘比特应助tourist585采纳,获得10
16秒前
16秒前
樱桃儿完成签到,获得积分10
17秒前
飞飛飝完成签到,获得积分10
17秒前
18秒前
18秒前
Yezang18完成签到,获得积分10
18秒前
Akim应助王jh采纳,获得10
18秒前
19秒前
鲤鱼凛发布了新的文献求助20
20秒前
wweiweili发布了新的文献求助10
20秒前
puziju完成签到,获得积分10
21秒前
gxtly完成签到,获得积分10
21秒前
4qfguj完成签到,获得积分10
22秒前
NJY发布了新的文献求助10
22秒前
自觉从筠发布了新的文献求助20
24秒前
24秒前
小二郎应助xxx采纳,获得10
24秒前
25秒前
bkagyin应助lili采纳,获得10
25秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302297
求助须知:如何正确求助?哪些是违规求助? 2936830
关于积分的说明 8478928
捐赠科研通 2610588
什么是DOI,文献DOI怎么找? 1425292
科研通“疑难数据库(出版商)”最低求助积分说明 662323
邀请新用户注册赠送积分活动 646569