A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting

风速 天气研究与预报模式 希尔伯特-黄变换 数值天气预报 计算机科学 算法 风力发电 卷积神经网络 时间序列 模式(计算机接口) 人工智能 人工神经网络 气象学 机器学习 白噪声 工程类 物理 电气工程 操作系统 电信
作者
Peng Hu,Lihua Mi,Lian Shen,C.S. Cai,Yuchen Liu,Kai Li,Guoji Xu
出处
期刊:Applied Energy [Elsevier]
卷期号:312: 118777-118777 被引量:70
标识
DOI:10.1016/j.apenergy.2022.118777
摘要

The accuracy of the wind speed prediction is of crucial significance for the operation and dispatch of the power grid system reasonably. However, wind speed is so random and intermittent that the accuracy of wind speed prediction always remains unsatisfactory. Moreover, the coupling relationship between other meteorological variables and wind speed in the time and frequency domains has rarely been studied. Subsequently, a hybrid wind speed prediction model based on weather research and forecasting (WRF) simulation is proposed according to a multivariate data decomposition method and deep learning algorithm optimized by an attention mechanism and a grid search algorithm. Firstly, the WRF simulation is utilized to obtain the predicted wind speed and other meteorological variables are also extracted from WRF different domains. Furthermore, the pearson correlation coefficient (PCC) method is adopted to select principal meteorological variables as the input series. Additionally, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method decomposes input series and historical data into respective intrinsic mode functions (IMFs). Then, a new hybrid deep learning model, combining a convolutional neural network (CNN) and a bidirectional long short-term memory network (BLSTM) optimized via an attention mechanism (AM) and a grid search method (GS), is proposed to predict the error and correct the wind speed from WRF innermost domain. Finally, the validation case study is conducted to verify the effectiveness of the proposed model. The results indicate that the proposed model outperforms other comparative models in terms of single-step and multi-step wind speed prediction. Specifically, the values of the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE) are 0.1042 m/s, 4.63% and 0.1309 m/s after correction, decreased by 94.13%, 91.75% and 93.93%, respectively, compared to those without correction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
cjh发布了新的文献求助10
刚刚
4秒前
鲑鱼完成签到 ,获得积分10
16秒前
TT完成签到 ,获得积分10
17秒前
18秒前
superspace完成签到 ,获得积分10
19秒前
21秒前
26秒前
sonicker完成签到 ,获得积分10
29秒前
英吉利25发布了新的文献求助30
32秒前
fang完成签到,获得积分0
34秒前
虚心青梦完成签到 ,获得积分10
44秒前
安静严青完成签到 ,获得积分10
50秒前
lorentzh完成签到,获得积分10
55秒前
月儿完成签到 ,获得积分10
56秒前
xixilulixiu完成签到 ,获得积分10
58秒前
Bear完成签到 ,获得积分10
1分钟前
baa完成签到,获得积分10
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
调皮平蓝完成签到,获得积分10
1分钟前
xiaosui完成签到 ,获得积分10
1分钟前
猪鼓励完成签到,获得积分10
1分钟前
大大怪完成签到,获得积分10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
mrconli完成签到,获得积分10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
Maestro_S应助科研通管家采纳,获得10
1分钟前
1分钟前
热心乞完成签到 ,获得积分10
1分钟前
1分钟前
落寞的幻竹完成签到,获得积分10
1分钟前
1分钟前
ldr888完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449747
捐赠科研通 4528754
什么是DOI,文献DOI怎么找? 2481677
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438550