Mechanics prediction of 2D architectured cellular structures using transfer learning

石墨烯 材料科学 机械强度 计算机科学 过程(计算) 极限抗拉强度 机械设计 人工智能
作者
Shaoheng Li,Ning Liu,Matthew Becton,Xiaowei Zeng,Xianqiao Wang
出处
期刊:Journal of micromechanics and molecular physics [World Scientific]
卷期号:: 1-11
标识
DOI:10.1142/s242491302144001x
摘要

Two-dimensional (2D) architectured cellular structures exhibit outstanding mechanical properties unmatched by their bulk counterparts and show promising outlooks in electronic applications. Understanding of the relationship between their mechanical properties and structure patterns has yet to be fully explored. Also, traditional design rules in 2D architectured structures requiring prior knowledge of geometric parameters impose fundamental challenges for achieving desired performance within a rapid optimization process. Here, by taking full advantage of unsupervised generative adversarial network-based transfer learning (TL) and high-performing coarse-grained molecular dynamics (CGMD), we propose an adaptive design strategy to predict the mechanical performance of 2D architectured cellular structures as well as unravel hidden design rules for maximizing specific tensile strength. Results indicate that the established TL model is accurate enough to predict the mechanical properties of graphene kirigami, in which [Formula: see text] is 0.994 and 0.985 for specific strength and yield strain, respectively. The proposed design method combining machine learning with CGMD extends the ability of physical simulation beyond performance prediction, optimizing fracture mechanical properties by screening through the entire geometric design space of the architected 2D structures. Overall, this work proves that the design method based on TL can effectively obtain the power of new physical insights for structure design and optimization of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
6秒前
鳗鱼如松完成签到,获得积分10
6秒前
8秒前
友好小之完成签到 ,获得积分10
8秒前
嘻哈hang应助xixihaha采纳,获得10
8秒前
斯文雪青完成签到,获得积分10
10秒前
13秒前
开朗丹雪完成签到,获得积分20
14秒前
Hello应助沈小葵采纳,获得10
15秒前
田様应助123123采纳,获得10
15秒前
隐形曼青应助雪崩采纳,获得10
16秒前
ZZ发布了新的文献求助10
18秒前
18秒前
杳鸢应助开朗丹雪采纳,获得10
19秒前
20秒前
tyd完成签到 ,获得积分10
24秒前
KSung完成签到 ,获得积分10
24秒前
26秒前
27秒前
漠然发布了新的文献求助10
27秒前
27秒前
CodeCraft应助ZZ采纳,获得10
28秒前
zcnsdtc1991发布了新的文献求助10
29秒前
jia发布了新的文献求助10
33秒前
33秒前
lorentzh完成签到,获得积分10
38秒前
123123发布了新的文献求助10
39秒前
浅塘完成签到,获得积分10
40秒前
顾矜应助暴躁小兔采纳,获得10
40秒前
崽崽崽崽崽崽崽关注了科研通微信公众号
40秒前
42秒前
lc完成签到,获得积分20
43秒前
44秒前
希望天下0贩的0应助浅塘采纳,获得10
44秒前
46秒前
46秒前
TTT完成签到,获得积分10
46秒前
actor2006完成签到,获得积分10
47秒前
kagaminelen发布了新的文献求助10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461092
求助须知:如何正确求助?哪些是违规求助? 3054904
关于积分的说明 9045252
捐赠科研通 2744780
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173