LiDAR Depth Completion Using Color-Embedded Information via Knowledge Distillation

激光雷达 人工智能 计算机科学 卷积神经网络 杠杆(统计) 计算机视觉 GSM演进的增强数据速率 深度学习 模式识别(心理学) 彩色图像 图像(数学) 遥感 图像处理 地质学
作者
Sangwon Hwang,Junhyeop Lee,Woo Jin Kim,Sungmin Woo,Kyungjae Lee,Sangyoun Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 14482-14496 被引量:14
标识
DOI:10.1109/tits.2021.3129901
摘要

Depth completion is the task of reconstructing dense depth images from sparse LiDAR data. LiDAR depth completion, for which LiDAR data is the only input, is an ill-posed and challenging problem owing to the underlying properties of LiDAR data: extremely few points, presence of discontinuities, and absence of texture information. Accordingly, most approaches are heavily dependent on guided color images, which leads to unsatisfactory results when the color images are degraded. To alleviate the dependency on color images but leverage this information during training, we present a deep convolutional neural network (CNN) consisting of depth and edge CNNs via transferring of knowledge. In order to compensate for the limitations of LiDAR data, we design the edge CNN to learn a gradient depth image from a powerful teacher network through the Knowledge-Distillation method. Since the teacher network is trained with color images, color-embedded information can be obtained in the test phase even if color images are not used as an input. We further propose a Self-Distillation method for transferring the color-embedded features from the edge CNN to the depth CNN. Enforcing the depth features to contain edge information hardly observed in LiDAR data enables the depth CNN to generate more edge-attentive and structure-preserving results. Our novel methods show remarkable results in outdoor and indoor environments for KITTI and NYU-Depth-V2 datasets. Experiments performed with low-channel LiDAR data in KITTI and few depth points in the NYU-Depth-V2 dataset show that our method is robust to data sparsity and applicable in various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
3秒前
早点睡觉丶完成签到,获得积分20
4秒前
虚幻初之发布了新的文献求助10
4秒前
5秒前
祖丽发布了新的文献求助10
6秒前
桐桐应助saisyo采纳,获得10
7秒前
8秒前
快乐的雨竹完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
马亚飞发布了新的文献求助10
10秒前
haimianbaobao完成签到 ,获得积分10
11秒前
细心慕凝发布了新的文献求助10
13秒前
14秒前
饱满南松发布了新的文献求助10
17秒前
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
MITNO1完成签到,获得积分10
18秒前
Bryan应助科研通管家采纳,获得10
18秒前
Bryan应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
MchemG应助科研通管家采纳,获得10
19秒前
yx_cheng应助科研通管家采纳,获得30
19秒前
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
祖丽完成签到,获得积分10
21秒前
22秒前
慕青应助饱满南松采纳,获得10
23秒前
Sylovia发布了新的文献求助30
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975516
求助须知:如何正确求助?哪些是违规求助? 3519930
关于积分的说明 11200130
捐赠科研通 3256278
什么是DOI,文献DOI怎么找? 1798183
邀请新用户注册赠送积分活动 877425
科研通“疑难数据库(出版商)”最低求助积分说明 806320