LiDAR Depth Completion Using Color-Embedded Information via Knowledge Distillation

激光雷达 人工智能 计算机科学 卷积神经网络 杠杆(统计) 计算机视觉 GSM演进的增强数据速率 深度学习 模式识别(心理学) 彩色图像 图像(数学) 遥感 图像处理 地质学
作者
Sangwon Hwang,Junhyeop Lee,Woo Jin Kim,Sungmin Woo,Kyungjae Lee,Sangyoun Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 14482-14496 被引量:14
标识
DOI:10.1109/tits.2021.3129901
摘要

Depth completion is the task of reconstructing dense depth images from sparse LiDAR data. LiDAR depth completion, for which LiDAR data is the only input, is an ill-posed and challenging problem owing to the underlying properties of LiDAR data: extremely few points, presence of discontinuities, and absence of texture information. Accordingly, most approaches are heavily dependent on guided color images, which leads to unsatisfactory results when the color images are degraded. To alleviate the dependency on color images but leverage this information during training, we present a deep convolutional neural network (CNN) consisting of depth and edge CNNs via transferring of knowledge. In order to compensate for the limitations of LiDAR data, we design the edge CNN to learn a gradient depth image from a powerful teacher network through the Knowledge-Distillation method. Since the teacher network is trained with color images, color-embedded information can be obtained in the test phase even if color images are not used as an input. We further propose a Self-Distillation method for transferring the color-embedded features from the edge CNN to the depth CNN. Enforcing the depth features to contain edge information hardly observed in LiDAR data enables the depth CNN to generate more edge-attentive and structure-preserving results. Our novel methods show remarkable results in outdoor and indoor environments for KITTI and NYU-Depth-V2 datasets. Experiments performed with low-channel LiDAR data in KITTI and few depth points in the NYU-Depth-V2 dataset show that our method is robust to data sparsity and applicable in various scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六千里大风完成签到,获得积分10
刚刚
2秒前
玉洁发布了新的文献求助10
2秒前
西门醉卉发布了新的文献求助10
2秒前
jiangnan发布了新的文献求助10
3秒前
supertkeb应助无辜的安白采纳,获得10
5秒前
CipherSage应助无辜的安白采纳,获得10
5秒前
6秒前
6秒前
万能图书馆应助玉洁采纳,获得10
7秒前
9秒前
10秒前
西门醉卉完成签到,获得积分10
10秒前
11秒前
六初完成签到 ,获得积分10
15秒前
传奇3应助jiangnan采纳,获得10
15秒前
yar应助lihaifeng采纳,获得10
15秒前
19秒前
熊熊面包应助Ahian采纳,获得10
20秒前
Yuanyuan发布了新的文献求助10
20秒前
南栀完成签到 ,获得积分10
20秒前
22秒前
健壮的囧发布了新的文献求助10
24秒前
24秒前
木叶_卡卡西完成签到,获得积分10
25秒前
玉洁发布了新的文献求助10
25秒前
25秒前
26秒前
暮霭沉沉发布了新的文献求助10
27秒前
haikuotian发布了新的文献求助10
28秒前
玉洁完成签到,获得积分20
29秒前
大气时光完成签到,获得积分10
30秒前
Akim应助Yuanyuan采纳,获得10
31秒前
suyu发布了新的文献求助10
31秒前
健壮的囧完成签到,获得积分10
32秒前
隐形曼青应助暮霭沉沉采纳,获得10
33秒前
盐汽水完成签到 ,获得积分10
33秒前
科研通AI2S应助文文采纳,获得10
36秒前
超级小飞侠完成签到 ,获得积分10
36秒前
科研八戒发布了新的文献求助10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
环境的想象:梭罗、自然写作和美国文化的形成 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304319
求助须知:如何正确求助?哪些是违规求助? 2938315
关于积分的说明 8488060
捐赠科研通 2612780
什么是DOI,文献DOI怎么找? 1426863
科研通“疑难数据库(出版商)”最低求助积分说明 662866
邀请新用户注册赠送积分活动 647369