Real-time monitoring of single-cell secretion with a high-throughput nanoplasmonic microarray

单细胞分析 生物芯片 吞吐量 蛋白质微阵列 时间分辨率 微阵列 细胞生物学 纳米技术 化学 细胞 分泌物 计算机科学 生物系统 生物 材料科学 基因表达 生物化学 物理 基因 电信 量子力学 无线
作者
Yen‐Cheng Liu,Saeid Ansaryan,Xiaokang Li,Eduardo Arvelo,Hatice Altug
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:202: 113955-113955 被引量:18
标识
DOI:10.1016/j.bios.2021.113955
摘要

Proteins secreted by cells play significant roles in mediating many physiological, developmental, and pathological processes due to their functions in intra/intercellular communication and signaling. Conventional end-point methods are insufficient for understanding the temporal response in cell secretion process, which is often highly dynamic. Furthermore, cellular heterogeneity makes it essential to analyze secretory proteins from single cells. To uncover individual cellular activities and the underlying kinetics, new technologies are needed for real-time analysis of the secretomes of many cells at single-cell resolution. This study reports a high-throughput biosensing microarray platform, which is capable of label-free and real-time secretome monitoring from a large number of living single cells using a biochip integrating ultrasensitive nanoplasmonic substrate and microwell compartments having volumes of ∼0.4 nL. Precise synchronization of image acquisition and microscope stage movement of the developed optical platform enables spectroscopic analysis with high temporal and spectral resolution. In addition, our system allows simultaneous optical imaging of cells to track morphology changes for a comprehensive understanding of cellular behavior. We demonstrated the platform performance by detecting interleukin-2 secretion from hundreds of single lymphoma cells in real-time over many hours. Significantly, the analysis of the secretion kinetics allows us to study cellular response to the stimulations in a statistical way. The new platform is a promising tool for the characterization of single-cell functionalities given its versatility, throughput and label-free configuration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助GangWu采纳,获得10
刚刚
刚刚
彪壮的小五完成签到,获得积分10
1秒前
1秒前
an关闭了an文献求助
1秒前
小林完成签到,获得积分20
1秒前
能干的丸子完成签到,获得积分10
2秒前
啊倦发布了新的文献求助10
2秒前
3秒前
松花酿酒发布了新的文献求助20
4秒前
FashionBoy应助小星采纳,获得10
4秒前
阔达丹雪发布了新的文献求助30
4秒前
眼睛大小之完成签到,获得积分10
4秒前
zho发布了新的文献求助10
4秒前
漾漾完成签到,获得积分10
7秒前
哈哈发布了新的文献求助10
7秒前
斯文败类应助大圣采纳,获得10
7秒前
AAAAA完成签到,获得积分10
8秒前
8秒前
张顺顺发布了新的文献求助10
8秒前
9秒前
9秒前
run发布了新的文献求助10
10秒前
传奇3应助蜀道胡不归采纳,获得10
11秒前
Jasper应助啊倦采纳,获得10
12秒前
诸恶莫作完成签到,获得积分10
12秒前
GangWu完成签到,获得积分20
13秒前
FD发布了新的文献求助10
13秒前
张顺顺完成签到,获得积分20
14秒前
轻松的书南给轻松的书南的求助进行了留言
15秒前
NexusExplorer应助hqr采纳,获得10
15秒前
FashionBoy应助yyx采纳,获得10
15秒前
15秒前
斯文败类应助小陈采纳,获得10
16秒前
CipherSage应助哈哈采纳,获得10
16秒前
16秒前
16秒前
顾矜应助xiongyue采纳,获得10
17秒前
领导范儿应助优美怀蕊采纳,获得10
19秒前
斯文败类应助酷炫的靖仇采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883