已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A GAN Guided Parallel CNN and Transformer Network for EEG Denoising

鉴别器 计算机科学 脑电图 人工智能 降噪 模式识别(心理学) 变压器 深度学习 工件(错误) 工程类 心理学 电信 探测器 精神科 电气工程 电压
作者
Yin Jin,Aiping Liu,Chang Li,Ruobing Qian,Xun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:10
标识
DOI:10.1109/jbhi.2023.3277596
摘要

Electroencephalography (EEG) signals are often contaminated with various physiological artifacts, seriously affecting the quality of subsequent analysis. Therefore, removing artifacts is an essential step in practice. As of now, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods. However, they still suffer from the following limitations. The existing structure designs have not fully taken into account the temporal characteristics of artifacts. Meanwhile, the existing training strategies usually ignore the holistic consistency between denoised EEG signals and authentic clean ones. To address these issues, we propose a GAN guided parallel CNN and transformer network, named GCTNet. The generator contains parallel CNN blocks and transformer blocks to respectively capture local and global temporal dependencies. Then, a discriminator is employed to detect and correct the holistic inconsistencies between clean and denoised EEG signals. We evaluate the proposed network on both semi-simulated and real data. Extensive experimental results demonstrate that GCTNet significantly outperforms state-of-the-art networks in various artifact removal tasks, as evidenced by its superior objective evaluation metrics. For example, in the task of removing electromyography artifacts, GCTNet achieves 11.15% reduction in RRMSE and 9.81% improvement in SNR over other methods, highlighting the potential of the proposed method as a promising solution for EEG signals in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助rht采纳,获得10
刚刚
medea完成签到,获得积分10
1秒前
KK发布了新的文献求助10
1秒前
瑾木完成签到,获得积分10
2秒前
azure完成签到,获得积分10
2秒前
完美世界应助baby709466采纳,获得10
3秒前
4秒前
纯真的南琴完成签到,获得积分10
4秒前
9秒前
10秒前
11秒前
13秒前
13秒前
guoyu发布了新的文献求助10
13秒前
gao0505完成签到,获得积分10
13秒前
体贴的兔子完成签到,获得积分10
14秒前
龙骑士25发布了新的文献求助10
16秒前
16秒前
HT发布了新的文献求助10
17秒前
18秒前
念之完成签到 ,获得积分10
19秒前
19秒前
汪汪别吃了完成签到 ,获得积分10
22秒前
Xxi发布了新的文献求助10
23秒前
liuliu发布了新的文献求助10
24秒前
光亮的半山完成签到,获得积分10
25秒前
26秒前
wanci应助yaoyao采纳,获得10
28秒前
顺利寄文完成签到 ,获得积分10
31秒前
爆米花应助HT采纳,获得10
31秒前
CatherineRR完成签到 ,获得积分10
31秒前
31秒前
爱撒娇的酸奶关注了科研通微信公众号
32秒前
Owen应助彭淑婷采纳,获得10
32秒前
缥缈大雁发布了新的文献求助10
33秒前
coco发布了新的文献求助10
34秒前
楼迎荷完成签到,获得积分10
35秒前
无限的石头完成签到 ,获得积分10
37秒前
我是老大应助honger采纳,获得10
37秒前
缥缈大雁完成签到,获得积分10
40秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229535
求助须知:如何正确求助?哪些是违规求助? 2877143
关于积分的说明 8197956
捐赠科研通 2544488
什么是DOI,文献DOI怎么找? 1374419
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749