Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events

医学 内科学 心脏病学 心肌纤维化 纤维化 心力衰竭 星团(航天器) 磁共振成像 放射科 计算机科学 程序设计语言
作者
Olivier Huttin,Nicolas Girerd,Antoine Jobbé‐Duval,Anne-Laure Constant Dit Beaufils,Thomas Sénage,Laura Filippetti,Caroline Cueff,Kévin Duarte,Antoine Fraix,Nicolas Piriou,Damien Mandry,Nathalie Pace,Solena Le Scouarnec,Romain Capoulade,Matthieu Echivard,Jean‐Marc Sellal,Marie Marrec,Marine Beaumont,G. Hossu,Jean‐Noël Trochu,Nicolas Sadoul,Pierre-Yves Marie,Charles Guenancia,Jean‐Jacques Schott,Jean‐Christian Roussel,Jean‐Michel Serfaty,Christine Selton‐Suty,Thierry Le Tourneau
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:16 (10): 1271-1284 被引量:7
标识
DOI:10.1016/j.jcmg.2023.03.009
摘要

Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain <21% and indexed LA volume >42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乎乎完成签到,获得积分10
1秒前
清秀服饰完成签到,获得积分10
1秒前
HJJHJH发布了新的文献求助10
1秒前
2秒前
yiyi完成签到,获得积分20
2秒前
3秒前
lizhaoyu发布了新的文献求助10
3秒前
4秒前
4秒前
小栩完成签到 ,获得积分10
4秒前
科目三应助jochimchan采纳,获得10
5秒前
菲菲公主发布了新的文献求助10
5秒前
迷人人雄发布了新的文献求助10
6秒前
螳螂腿子发布了新的文献求助10
6秒前
7秒前
7秒前
秋风今是完成签到 ,获得积分10
8秒前
8秒前
Umar发布了新的文献求助10
8秒前
9秒前
ABCD完成签到,获得积分10
10秒前
10秒前
11秒前
熊熊发布了新的文献求助10
11秒前
jochimchan完成签到,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
13秒前
13秒前
南风发布了新的文献求助10
13秒前
迷人人雄完成签到,获得积分10
14秒前
乐乐应助七斤文采纳,获得10
14秒前
tao_blue发布了新的文献求助10
15秒前
干净访烟发布了新的文献求助100
15秒前
qinchuanniu完成签到,获得积分10
16秒前
伈X发布了新的文献求助10
16秒前
外向白开水完成签到 ,获得积分10
17秒前
jochimchan发布了新的文献求助10
17秒前
nikki完成签到,获得积分20
17秒前
17秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203