Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events

医学 内科学 心脏病学 心肌纤维化 纤维化 心力衰竭 星团(航天器) 磁共振成像 放射科 计算机科学 程序设计语言
作者
Olivier Huttin,Nicolas Girerd,Antoine Jobbé‐Duval,Anne-Laure Constant Dit Beaufils,Thomas Sénage,Laura Filippetti,Caroline Cueff,Kévin Duarte,Antoine Fraix,Nicolas Piriou,Damien Mandry,Nathalie Pace,Solena Le Scouarnec,Romain Capoulade,Matthieu Echivard,Jean‐Marc Sellal,Marie Marrec,Marine Beaumont,G. Hossu,Jean‐Noël Trochu
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:16 (10): 1271-1284 被引量:16
标识
DOI:10.1016/j.jcmg.2023.03.009
摘要

Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain <21% and indexed LA volume >42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曾无忧发布了新的文献求助10
1秒前
star发布了新的文献求助10
1秒前
丁丁完成签到 ,获得积分10
1秒前
着急的青枫应助NNUsusan采纳,获得20
1秒前
科研混子发布了新的文献求助10
2秒前
zq完成签到,获得积分10
2秒前
3秒前
3秒前
123完成签到,获得积分10
3秒前
香草哥完成签到,获得积分10
4秒前
6秒前
嘎嘎关注了科研通微信公众号
6秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
刻苦秋烟发布了新的文献求助10
10秒前
Akim应助肥弹弹采纳,获得10
10秒前
方伟达完成签到,获得积分10
11秒前
鲤跃发布了新的文献求助10
12秒前
情怀应助临界采纳,获得10
12秒前
12秒前
打打应助故意的小熊猫采纳,获得10
13秒前
15秒前
文章大发发布了新的文献求助10
16秒前
17秒前
浮游应助Yang采纳,获得10
18秒前
18秒前
Afei完成签到,获得积分10
19秒前
科研通AI6应助鲤跃采纳,获得10
21秒前
谭凯文完成签到,获得积分10
21秒前
Afei发布了新的文献求助10
23秒前
文章大发完成签到,获得积分10
24秒前
24秒前
大方易槐发布了新的文献求助10
25秒前
25秒前
曾无忧发布了新的文献求助10
27秒前
27秒前
思源应助emilia采纳,获得10
28秒前
科研通AI6应助凝雁采纳,获得30
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896403
求助须知:如何正确求助?哪些是违规求助? 4178074
关于积分的说明 12969799
捐赠科研通 3941347
什么是DOI,文献DOI怎么找? 2162226
邀请新用户注册赠送积分活动 1180680
关于科研通互助平台的介绍 1086242