Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events

医学 内科学 心脏病学 心肌纤维化 纤维化 心力衰竭 星团(航天器) 磁共振成像 放射科 计算机科学 程序设计语言
作者
Olivier Huttin,Nicolas Girerd,Antoine Jobbé‐Duval,Anne-Laure Constant Dit Beaufils,Thomas Sénage,Laura Filippetti,Caroline Cueff,Kévin Duarte,Antoine Fraix,Nicolas Piriou,Damien Mandry,Nathalie Pace,Solena Le Scouarnec,Romain Capoulade,Matthieu Echivard,Jean‐Marc Sellal,Marie Marrec,Marine Beaumont,G. Hossu,Jean‐Noël Trochu,Nicolas Sadoul,Pierre-Yves Marie,Charles Guenancia,Jean‐Jacques Schott,Jean‐Christian Roussel,Jean‐Michel Serfaty,Christine Selton‐Suty,Thierry Le Tourneau
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:16 (10): 1271-1284 被引量:7
标识
DOI:10.1016/j.jcmg.2023.03.009
摘要

Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain <21% and indexed LA volume >42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xTATx关注了科研通微信公众号
1秒前
zxp完成签到,获得积分10
1秒前
i羽翼深蓝i完成签到,获得积分10
2秒前
YouziBa完成签到,获得积分10
2秒前
3秒前
吴一一完成签到,获得积分10
5秒前
风中一叶完成签到 ,获得积分10
5秒前
jxt2023完成签到,获得积分10
7秒前
飘逸访文完成签到,获得积分10
8秒前
Kz完成签到,获得积分10
9秒前
asheng98完成签到 ,获得积分10
9秒前
比巴卜完成签到,获得积分10
10秒前
zong240221完成签到 ,获得积分10
10秒前
尛海完成签到,获得积分10
11秒前
痴情的从雪完成签到,获得积分10
13秒前
ltc完成签到,获得积分10
13秒前
清脆的乌冬面完成签到,获得积分10
14秒前
WenzongLai完成签到,获得积分10
14秒前
15秒前
yuan完成签到,获得积分10
15秒前
啊啊~秋~完成签到,获得积分10
15秒前
自私向日葵完成签到,获得积分10
15秒前
byron完成签到,获得积分10
16秒前
18秒前
18秒前
ao完成签到,获得积分10
18秒前
醉熏的晓夏完成签到,获得积分10
19秒前
was_3完成签到,获得积分10
19秒前
有魅力勒完成签到,获得积分10
20秒前
kisswind发布了新的文献求助10
21秒前
搬石头完成签到,获得积分10
21秒前
Tom发布了新的文献求助10
22秒前
chaohuiwang完成签到,获得积分10
23秒前
imomoe完成签到,获得积分10
23秒前
西扬完成签到 ,获得积分10
24秒前
动听的安寒完成签到 ,获得积分10
24秒前
七里海完成签到,获得积分10
25秒前
qiancib202完成签到,获得积分10
25秒前
wbh完成签到,获得积分10
25秒前
秋向秋完成签到,获得积分10
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807511
捐赠科研通 2450069
什么是DOI,文献DOI怎么找? 1303637
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350