Recent advances in the tools and techniques for AI-aided diagnosis of atrial fibrillation

心房颤动 医学 计算机科学 心脏病学 重症监护医学 数据科学
作者
Md Saiful Islam,M. R. Islam,Sanjid-E-Elahi,M. A. Abedin,Tansel Dökeroğlu,Mahmudur Rahman
出处
期刊:Biophysics reviews [American Institute of Physics]
卷期号:6 (1)
标识
DOI:10.1063/5.0217416
摘要

Atrial fibrillation (AF) is recognized as a developing global epidemic responsible for a significant burden of morbidity and mortality. To counter this public health crisis, the advancement of artificial intelligence (AI)-aided tools and methodologies for the effective detection and monitoring of AF is becoming increasingly apparent. A unified strategy from the international research community is essential to develop effective intelligent tools and technologies to support the health professionals for effective surveillance and defense against AF. This review delves into the practical implications of AI-aided tools and techniques for AF detection across different clinical settings including screening, diagnosis, and ambulatory monitoring by reviewing the revolutionary research works. The key finding is that the advance in AI and its use for automatic detection of AF has achieved remarkable success, but collaboration between AI and human intelligence is required for trustworthy diagnostic of this life-threatening cardiac condition. Moreover, designing efficient and robust intelligent algorithms for onboard AF detection using portable and implementable computing devices with limited computation power and energy supply is a crucial research problem. As modern wearable devices are equipped with sophisticated embedded sensors, such as optical sensors and accelerometers, hence photoplethysmography and ballistocardiography signals could be explored as an affordable alternative to electrocardiography (ECG) signals for AF detection, particularly for the development of low-cost and miniature screening and monitoring devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hebig发布了新的文献求助10
刚刚
1秒前
seven完成签到,获得积分10
2秒前
无情的白桃完成签到,获得积分10
2秒前
崔佳鑫完成签到 ,获得积分10
2秒前
3秒前
哈哈哈哈哈完成签到,获得积分10
4秒前
楚寅完成签到,获得积分10
5秒前
shanshan完成签到,获得积分20
6秒前
可爱的函函应助lilei采纳,获得10
6秒前
滴滴滴发布了新的文献求助10
7秒前
打打应助KY Mr.WANG采纳,获得10
9秒前
科研通AI2S应助研友_ZbM2qn采纳,获得10
10秒前
Cici完成签到,获得积分10
11秒前
义气小白菜完成签到 ,获得积分10
11秒前
李怼怼完成签到,获得积分10
14秒前
坦率芝麻应助SG采纳,获得10
14秒前
Ulrica完成签到,获得积分10
14秒前
柠檬酸完成签到,获得积分10
15秒前
15秒前
songf11完成签到,获得积分10
16秒前
年轻的钢笔完成签到,获得积分10
17秒前
小雅完成签到 ,获得积分0
17秒前
英姑应助科研通管家采纳,获得10
18秒前
极度厌蠢应助xzy998采纳,获得10
18秒前
18秒前
18秒前
淡然冬灵应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
淡然冬灵应助科研通管家采纳,获得10
18秒前
18秒前
Orange应助科研通管家采纳,获得30
19秒前
talksilence完成签到,获得积分10
20秒前
王欣完成签到 ,获得积分10
20秒前
滴滴滴发布了新的文献求助10
20秒前
你看,这只猫丶完成签到 ,获得积分10
21秒前
23秒前
24秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350209
求助须知:如何正确求助?哪些是违规求助? 2976028
关于积分的说明 8672575
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454866
科研通“疑难数据库(出版商)”最低求助积分说明 673541
邀请新用户注册赠送积分活动 664017