纳米反应器
介孔材料
异质结
材料科学
Crystal(编程语言)
面(心理学)
离解(化学)
选择性
光催化
质子化
纳米技术
晶体结构
光化学
结晶学
化学
离子
光电子学
催化作用
物理化学
纳米颗粒
有机化学
社会心理学
五大性格特征
人格
计算机科学
心理学
程序设计语言
作者
Jiaming Zhang,Linlin Duan,Wei Zhang,Bing Ma,Jiangwei Zhang,Jinying Li,Aixia Wang,Peiting Guo,Dongyuan Zhao,Yuzhu Ma
标识
DOI:10.1002/anie.202423861
摘要
Abstract Crystal‐facet heterojunction engineering of mesoporous nanoreactors with highly redox‐active represents an efficacious strategy for the transformation of CO 2 into valuable C 2 products (e.g., C 2 H 4 ). Herein, hollow mesoporous cube‐like CuS nanoreactors (~860 nm) with controlled anisotropic crystal‐facets are prepared through an interfacial‐confined ion dynamic migration‐rearrangement strategy. The regulation of the S 2− ion concentration facilitates the modulation of the highly active (110) to (100) crystal‐facet ratios from 0.119 to 0.288, and induces the formation of anisotropic crystal‐facet heterojunctions. The controllable crystal‐facet heterojunctions trigger the directional charge carrier migration, and are accompanied with the formation of tandem S‐defect sites (Cu 0 ‐S 1 @S 3 ). Both of them promote the efficient electron‐hole pair dissociation and attain asymmetric C−C coupling. The hollow mesoporous CuS nanoreactors with optimized crystal‐facet ratio of 0.224 (HMe‐CuS‐3) deliver a high selectivity of 72.7 % for the photocatalytic reduction of CO 2 to acetylene (C 2 H 2 ). Further constructed Au‐(110) and Co 3 O 4 ‐(100) spatially separated cascade nanoreactors (SS‐Au@Co 3 O 4 ‐CuS) achieve CO 2 ‐C 2 H 4 photoreduction, in which the Co‐sites enhance H 2 O dissociation to provide protons and the protonation of *CO to *COH. The *COH is further captured by Au‐sites to accomplish the asymmetric *CO‐*COH coupling and subsequent protonation, ensuring a high C 2 H 4 generation rate of 4.11 μmol/g/h with a selectivity as high as 90.6 %.
科研通智能强力驱动
Strongly Powered by AbleSci AI