清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence performance in ultrasound-based lymph node diagnosis: a systematic review and meta-analysis

医学 诊断优势比 科克伦图书馆 荟萃分析 超声波 放射科 外科肿瘤学 活检 淋巴结 优势比 子群分析 肿瘤科 病理
作者
Xinyang Han,Jingguo Qu,M Chui,Simon Takadiyi Gunda,Ziman Chen,Jing Qin,Ann D. King,Chiu‐Wing Winnie Chu,Jing Cai,Michael Ying
出处
期刊:BMC Cancer [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12885-025-13447-y
摘要

Accurate classification of lymphadenopathy is essential for determining the pathological nature of lymph nodes (LNs), which plays a crucial role in treatment selection. The biopsy method is invasive and carries the risk of sampling failure, while the utilization of non-invasive approaches such as ultrasound can minimize the probability of iatrogenic injury and infection. With the advancement of artificial intelligence (AI) and machine learning, the diagnostic efficiency of LNs is further enhanced. This study evaluates the performance of ultrasound-based AI applications in the classification of benign and malignant LNs. The literature research was conducted using the PubMed, EMBASE, and Cochrane Library databases as of June 2024. The quality of the included studies was evaluated using the QUADAS-2 tool. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated to assess the diagnostic efficacy of ultrasound-based AI in classifying benign and malignant LNs. Subgroup analyses were also conducted to identify potential sources of heterogeneity. A total of 1,355 studies were identified and reviewed. Among these studies, 19 studies met the inclusion criteria, and 2,354 cases were included in the analysis. The pooled sensitivity, specificity, and DOR of ultrasound-based machine learning in classifying benign and malignant LNs were 0.836 (95% CI [0.805, 0.863]), 0.850 (95% CI [0.805, 0.886]), and 33.331 (95% CI [22.873, 48.57]), respectively, indicating no publication bias (p = 0.12). Subgroup analyses may suggest that the location of lymph nodes, validation methods, and type of primary tumor are the sources of heterogeneity. AI can accurately differentiate benign from malignant LNs. Given the widespread use of ultrasonography in diagnosing malignant LNs in cancer patients, there is significant potential for integrating AI-based decision support systems into clinical practice to enhance the diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
31秒前
一味地丶逞强完成签到,获得积分10
46秒前
54秒前
1分钟前
1分钟前
1分钟前
小二郎应助小兄弟采纳,获得30
2分钟前
小马甲应助百里幻竹采纳,获得10
2分钟前
2分钟前
小兄弟完成签到,获得积分20
2分钟前
小兄弟发布了新的文献求助30
2分钟前
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
3分钟前
科研通AI2S应助li采纳,获得10
4分钟前
细心的如天完成签到 ,获得积分10
4分钟前
sun_lin完成签到 ,获得积分10
4分钟前
4分钟前
PIngguo完成签到 ,获得积分10
5分钟前
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
6分钟前
gwbk完成签到,获得积分10
6分钟前
6分钟前
相龙发布了新的文献求助10
6分钟前
深情安青应助相龙采纳,获得10
6分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
7分钟前
小蘑菇应助科研通管家采纳,获得10
7分钟前
脑洞疼应助科研通管家采纳,获得10
7分钟前
姚老表完成签到,获得积分10
7分钟前
善学以致用应助百里幻竹采纳,获得10
8分钟前
晶晶完成签到,获得积分10
9分钟前
9分钟前
9分钟前
hwen1998完成签到 ,获得积分10
9分钟前
10分钟前
沿途有你完成签到 ,获得积分10
10分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887