Advancing ensemble learning techniques for residential building electricity consumption forecasting: Insight from explainable artificial intelligence

可解释性 计算机科学 机器学习 人工智能 透明度(行为) 决策树 能源消耗 集合预报 集成学习 数据挖掘 工程类 电气工程 计算机安全
作者
Jihoon Moon,Muazzam Maqsood,Dayeong So,Sung Wook Baik,Seungmin Rho,Yunyoung Nam
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (11): e0307654-e0307654 被引量:1
标识
DOI:10.1371/journal.pone.0307654
摘要

Accurate electricity consumption forecasting in residential buildings has a direct impact on energy efficiency and cost management, making it a critical component of sustainable energy practices. Decision tree-based ensemble learning techniques are particularly effective for this task due to their ability to process complex datasets with high accuracy. Furthermore, incorporating explainable artificial intelligence into these predictions provides clarity and interpretability, allowing energy managers and homeowners to make informed decisions that optimize usage and reduce costs. This study comparatively analyzes decision tree–ensemble learning techniques augmented with explainable artificial intelligence for transparency and interpretability in residential building energy consumption forecasting. This approach employs the University Residential Complex and Appliances Energy Prediction datasets, data preprocessing, and decision-tree bagging and boosting methods. The superior model is evaluated using the Shapley additive explanations method within the explainable artificial intelligence framework, explaining the influence of input variables and decision-making processes. The analysis reveals the significant influence of the temperature-humidity index and wind chill temperature on short-term load forecasting, transcending traditional parameters, such as temperature, humidity, and wind speed. The complete study and source code have been made available on our GitHub repository at https://github.com/sodayeong for the purpose of enhancing precision and interpretability in energy system management, thereby promoting transparency and enabling replication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Sin7完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
善学以致用应助李麟采纳,获得10
6秒前
SCINEXUS发布了新的文献求助10
7秒前
Dank1ng发布了新的文献求助10
8秒前
8秒前
sxy0604发布了新的文献求助10
8秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
liu应助科研通管家采纳,获得10
11秒前
liu应助科研通管家采纳,获得10
11秒前
林林子完成签到,获得积分10
11秒前
liu应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得30
12秒前
maox1aoxin应助科研通管家采纳,获得150
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
liu应助科研通管家采纳,获得10
12秒前
jwx应助科研通管家采纳,获得10
12秒前
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
liu应助科研通管家采纳,获得10
12秒前
乐乐应助adazbq采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
liu应助科研通管家采纳,获得10
13秒前
13秒前
精明人达发布了新的文献求助20
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670611
求助须知:如何正确求助?哪些是违规求助? 3227630
关于积分的说明 9776427
捐赠科研通 2937783
什么是DOI,文献DOI怎么找? 1609606
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735869