已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance of vibration and current signals in the fault diagnosis of induction motors using deep learning and machine learning techniques

感应电动机 断层(地质) 振动 电流(流体) 计算机科学 人工智能 控制工程 工程类 机器学习 电气工程 声学 物理 地质学 电压 地震学
作者
Samuel Ayankoso,Ananta Dutta,Yinghang He,Fengshou Gu,Andrew D. Ball,Surjya K. Pal
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241289874
摘要

Induction motors (IMs) play a pivotal role in various industrial applications, powering critical systems such as pumps, compressors, fans, blowers, and refrigeration and air conditioning systems. Monitoring the health of these IMs is essential for ensuring reliable operation. Numerous sensors, including vibration, current, temperature, acoustic, and power sensors, can be employed for their health monitoring. This article conducts a comprehensive comparative analysis of two widely used sensors—vibration and current, for classifying different health states of IMs, such as a healthy condition, bearing fault, and misalignment. The study employed deep learning techniques, specifically 1D and 2D convolutional neural networks, trained on raw data. Additionally, machine learning techniques, including random forest and XGBoost, were utilized and trained on features derived from preprocessed signals using fast Fourier transform and discrete wavelet decomposition. Comparative results indicated that vibration signals achieved remarkably high accuracy, nearly 100%, in detecting the investigated mechanical faults, while current signals, after signal processing and manual feature extraction, achieved an accuracy of 87.41%. These results demonstrate that, though current sensors are a viable alternative to vibration sensors, their performance can be affected by the type and degree of the considered faults. This study also highlights the attributes of vibration and current signals in the health monitoring of rotating machinery such as IMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brain完成签到 ,获得积分10
3秒前
_张张完成签到 ,获得积分10
8秒前
快乐的若灵完成签到 ,获得积分10
11秒前
无辜烧鹅发布了新的文献求助10
11秒前
16秒前
Samar完成签到 ,获得积分10
17秒前
潇潇雨歇应助gaint采纳,获得10
20秒前
潇潇雨歇应助gaint采纳,获得10
20秒前
NexusExplorer应助gaint采纳,获得20
21秒前
丘比特应助gaint采纳,获得10
21秒前
李爱国应助gaint采纳,获得10
21秒前
英姑应助gaint采纳,获得10
21秒前
善学以致用应助gaint采纳,获得10
21秒前
小蘑菇应助gaint采纳,获得30
21秒前
接q辣舞发布了新的文献求助10
21秒前
华仔应助接q辣舞采纳,获得10
25秒前
传奇3应助称心太阳采纳,获得10
28秒前
35秒前
36秒前
36秒前
不想长大发布了新的文献求助10
39秒前
称心太阳发布了新的文献求助10
40秒前
机智的思山完成签到 ,获得积分10
43秒前
谨慎的荠发布了新的文献求助10
44秒前
xu完成签到 ,获得积分10
44秒前
47秒前
Sunny发布了新的文献求助10
52秒前
刘建章完成签到 ,获得积分10
54秒前
喔喔佳佳L完成签到 ,获得积分10
59秒前
桐桐应助Sunny采纳,获得10
1分钟前
taotao发布了新的文献求助10
1分钟前
几米完成签到 ,获得积分10
1分钟前
自由度完成签到,获得积分10
1分钟前
1分钟前
光亮的自行车完成签到 ,获得积分10
1分钟前
一个达不溜完成签到,获得积分10
1分钟前
Luuu发布了新的文献求助10
1分钟前
1分钟前
km6279完成签到,获得积分10
1分钟前
烟花应助minya采纳,获得10
1分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346755
求助须知:如何正确求助?哪些是违规求助? 2973338
关于积分的说明 8658999
捐赠科研通 2653866
什么是DOI,文献DOI怎么找? 1453336
科研通“疑难数据库(出版商)”最低求助积分说明 672870
邀请新用户注册赠送积分活动 662808