奶油
卡姆
细胞生物学
生物
MAPK/ERK通路
突触可塑性
转录因子
神经元记忆分配
神经科学
信号转导
化学
蛋白激酶A
磷酸化
受体
变质塑性
生物化学
基因
自磷酸化
作者
Katlin H. Zent,Mark L. Dell’Acqua
标识
DOI:10.1523/jneurosci.1216-24.2024
摘要
The cAMP-response element binding protein (CREB) transcription factor controls the expression of the neuronal immediate early genes c-Fos , Arc , and Bdnf and is essential for long-lasting synaptic plasticity underlying learning and memory. Despite this critical role, there is still ongoing debate regarding the synaptic excitation-transcription (E-T) coupling mechanisms mediating CREB activation in the nucleus. Here we employed optical uncaging of glutamate to mimic synaptic excitation of distal dendrites in conjunction with simultaneous imaging of intracellular Ca 2+ dynamics and transcriptional reporter gene expression to elucidate CREB E-T coupling mechanisms in hippocampal neurons cultured from both male and female rats. Using this approach, we found that CREB-dependent transcription was engaged following dendritic stimulation of N-methyl, D-aspartate receptors (NMDARs) only when Ca 2+ signals propagated to the soma via subsequent activation of L-type voltage-gated Ca 2+ channels resulting in activation of Extracellular signal-Regulated Kinase (ERK) MAP kinase signaling to sustain CREB phosphorylation in the nucleus. In contrast, dendrite-restricted Ca 2+ signals generated by NMDARs failed to stimulate CREB-dependent transcription. Furthermore, Ca 2+ -CaM-dependent kinase (CaMK)-mediated signaling pathways that may transiently contribute to CREB-phosphorylation following stimulation were ultimately dispensable for downstream CREB-dependent transcription and c-Fos induction. These findings emphasize the essential role that L-type Ca 2+ channels play in rapidly relaying signals over long distances from synapses located on distal dendrites to the nucleus to control gene expression. Significance Statement The transcription factor CREB controls gene expression programs required for long-lasting synaptic plasticity and learning and memory, yet the synapse-to-nucleus signaling mechanisms mediating CREB activation are still unclear. Using glutamate uncaging to mimic synaptic input to dendrites, this study shows that Ca 2+ signals propagated to the soma by L-type voltage-gated Ca 2+ channels engage the ERK MAP kinase cascade to mediate CREB phosphorylation and CREB-dependent transcription. In contrast, dendrite-restricted Ca 2+ signals generated primarily by NMDARs failed to effectively engage this signaling pathway or CREB-dependent transcription. In addition, we found that while ERK and CaMK pathways may both contribute to increased CREB phosphorylation immediately following neuronal stimulation, sustained ERK signaling to CREB was necessary to effectively drive CREB-dependent transcription.
科研通智能强力驱动
Strongly Powered by AbleSci AI