材料科学
超级电容器
纳米片
镍
假电容器
假电容
氢氧化物
钴
电解质
化学工程
电化学
电容
比表面积
纳米技术
电极
冶金
催化作用
化学
生物化学
物理化学
工程类
作者
Han-Wei Chang,Chia-Hsiang Lee,Shih-Hao Yang,Kuo‐Chuang Chiu,Tzu‐Yu Liu,Yu-Chen Tsai
出处
期刊:Molecules
[MDPI AG]
日期:2024-11-29
卷期号:29 (23): 5664-5664
标识
DOI:10.3390/molecules29235664
摘要
In this study, a three-dimensional (3D) interconnected porous Ni/SiC skeleton (3D Ni/SiC) was synthesized by binder-free hydrogen bubble template-assisted electrodeposition in an electrolyte containing Ni2+ ions and SiC nanopowders. This 3D Ni/SiC skeleton served as a substrate for directly synthesizing nickel–cobalt layered double hydroxide (LDH) nanosheets via electrodeposition, allowing the formation of a nickel–cobalt LDH nanosheet-decorated 3D Ni/SiC skeleton (NiCo@3D Ni/SiC). The multiscale hierarchical structure of NiCo@3D Ni/SiC was attributed to the synergistic interaction between the pseudocapacitor (3D Ni skeleton and Ni–Co LDH) and electrochemical double-layer capacitor (SiC nanopowders). It provided a large specific surface area to expose numerous active Ni and Co sites for Faradaic redox reactions, resulting in an enhanced pseudocapacitance. The as-fabricated NiCo@3D Ni/SiC structure demonstrated excellent rate capability with a high areal capacitance of 1565 mF cm−2 at a current density of 1 mA cm−2. Additionally, symmetrical supercapacitor devices based on this structure successfully powered commercial light-emitting diodes, indicating the potential of as-fabricated NiCo@3D Ni/SiC in practical energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI