已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aerolysin Nanopore Electrochemistry

溶氧素 纳米孔 电化学 纳米技术 材料科学 化学 生物化学 电极 物理化学 毒力 基因
作者
Jun‐Ge Li,Yi‐Lun Ying,Yi‐Tao Long
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00630
摘要

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore. Therefore, the pore-forming protein can efficiently transduce the characteristics of each target molecule into ion-transport-mediated signals with high sensitivity. Inspired by nature, various protein pores have been developed into high-throughput and label-free nanopore sensors for single-molecule detection, enabling rapid and accurate readouts. In particular, aerolysin, a key virulence factor of Aeromonas hydrophila, exhibits a high sensitivity in generating ionic current fingerprints for detecting subtle differences in the sequence, conformation, and structure of DNA, proteins, polypeptides, oligosaccharides, and other molecules. Aerolysin features a cap that is approximately 14 nm wide on the cis side and a central pore that is about 10 nm long with a minimum diameter of around 1 nm. Its long lumen, with 11 charged rings at two entrances and neutral amino acids in between, facilitates the dwelling of the single analyte within the pore. This characteristic enables rich interactions between the well-defined residues within the pore and the analyte. As a result, the ionic current signal offers a unique molecular fingerprint, extending beyond the traditional volume exclusion model in nanopore sensing. In 2006, aerolysin was first reported to discriminate conformational differences of single peptides, opening the door for a rapidly growing field of aerolysin nanopore electrochemistry. Over the years, various mutant aerolysin nanopores have emerged, associated with advanced instrumentation and data analysis algorithms, enabling the simultaneous identification of over 30 targets with the number still increasing. Aerolysin nanopore electrochemistry in particular allows time-resolved qualitative and quantitative analysis ranging from DNA sequencing, proteomics, enzyme kinetics, and single-molecule reactions to potential clinical diagnostics. Especially, the feasibility of aerolysin nanopore electrochemistry in dynamic quantitative analysis would revolutionize omics studies at the single-molecule level, paving the way for the promising field of single-molecule temporal omics. Despite the success of this approach so far, it remains challenging to understand how confined interactions correlate to the distinguishable ionic signatures. Recent attempts have added correction terms to the volume exclusion model to account for variations in ion mobility within the nanopore caused by the confined interactions between the aerolysin and the analyte. Therefore, in this Account, we revisit the origin of the current blockade induced by target molecules inside the aerolysin nanopore. We highlight the contributions of the confined noncovalent interactions to the sensing ability of the aerolysin nanopore through the corrected conductance model. This Account then describes the design of interaction networks within the aerolysin nanopore, including electrostatic, hydrophobic, hydrogen-bonding, cation−π, and ion–charged amino acid interactions, for ultrasensitive biomolecular identification and quantification. Finally, we provide an outlook on further understanding the noncovalent interaction network inside the aerolysin nanopore, improving the manipulating and fine-tuning of confined electrochemistry toward a broad range of practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYN发布了新的文献求助10
1秒前
慕青应助负责吃饭采纳,获得10
4秒前
深情安青应助哇哈哈哈采纳,获得10
5秒前
Dr.zhou完成签到,获得积分10
7秒前
8秒前
英俊的铭应助董秋白采纳,获得10
11秒前
斯文败类应助MIENIU采纳,获得30
12秒前
KYN完成签到,获得积分10
13秒前
14秒前
英俊的铭应助11楼阿水采纳,获得10
15秒前
热心书易发布了新的文献求助10
16秒前
17秒前
瓷儿发布了新的文献求助10
19秒前
19秒前
1111发布了新的文献求助10
21秒前
23秒前
23秒前
Ava应助在远方采纳,获得10
25秒前
guying321发布了新的文献求助10
26秒前
yss发布了新的文献求助10
27秒前
luqiqi发布了新的文献求助10
27秒前
27秒前
田様应助juno采纳,获得30
27秒前
33秒前
34秒前
现代的又柔应助Crazyhhb采纳,获得10
35秒前
36秒前
Hello应助田静然采纳,获得10
36秒前
香蕉觅云应助亮子采纳,获得10
37秒前
英俊的铭应助11楼阿水采纳,获得10
37秒前
1111完成签到,获得积分10
39秒前
慕青应助Rise采纳,获得10
40秒前
41秒前
无尘Z完成签到,获得积分10
41秒前
窝恁蝶发布了新的文献求助10
43秒前
21完成签到,获得积分10
43秒前
46秒前
46秒前
dalong发布了新的文献求助10
47秒前
ququ完成签到,获得积分10
48秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526254
求助须知:如何正确求助?哪些是违规求助? 3106684
关于积分的说明 9281258
捐赠科研通 2804208
什么是DOI,文献DOI怎么找? 1539365
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515