TriagedMSA: Triaging Sentimental Disagreement in Multimodal Sentiment Analysis

情绪分析 心理学 人工智能 计算机科学
作者
Yuanyi Luo,Wei Liu,Qiang Sun,Sirui Li,Jichunyang Li,Rui Wu,Xianglong Tang
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/taffc.2024.3524789
摘要

Existing multimodal sentiment analysis models are effective at capturing sentiment commonalities across different modalities and discerning emotions. However, these models still face significant challenges when analyzing samples with sentiment polarity differences across modalities. Neural networks struggle to process such divergent sentiment samples, particularly when they are scarce within datasets. While larger datasets could help address this limitation, collecting and annotating them is resource-intensive. To overcome this challenge, we propose TriagedMSA , a multimodal sentiment analysis model with triage capability. Our model introduces the Sentiment Disagreement Triage Network , which identifies sentiment disagreement between modalities within a sample. This triage mechanism reduces mutual influence by learning to distinguish between samples of sentiment agreement and disagreement. To process these two sample types, we develop the Sentiment Selection Attention Network and the Sentiment Commonality Attention Network , both of which enhance modality interaction learning. Furthermore, we propose the Adaptive Polarity Detection (APD) algorithm , which ensures the generalizability of our model across different datasets, regardless of whether unimodal labels are available. The APD algorithm adaptively determines sentiment polarity disagreement or agreement between modalities. We conduct experiments on three multimodal sentiment analysis datasets: CMU-MOSI , CMU-MOSEI and CH-SIMS.v2 . The results demonstrate that our proposed methodology outperforms existing state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhxh5946发布了新的文献求助30
1秒前
1秒前
冷静孤容发布了新的文献求助10
4秒前
mario发布了新的文献求助10
5秒前
zdy完成签到,获得积分20
7秒前
唐老四完成签到 ,获得积分10
8秒前
9秒前
繁轩星关注了科研通微信公众号
9秒前
阿鑫完成签到 ,获得积分10
9秒前
10秒前
早睡早起健康长寿完成签到,获得积分10
10秒前
Ywffffff完成签到 ,获得积分10
12秒前
随便吧发布了新的文献求助10
14秒前
yyyyyhh发布了新的文献求助10
15秒前
雷雷完成签到,获得积分10
15秒前
小二郎应助冷静孤容采纳,获得10
15秒前
17秒前
科研通AI5应助咕噜咕噜采纳,获得10
19秒前
Diss发布了新的文献求助20
20秒前
21秒前
今后应助dean采纳,获得10
22秒前
23秒前
hh发布了新的文献求助30
24秒前
张甜发布了新的文献求助10
26秒前
Monologue完成签到 ,获得积分10
26秒前
mario完成签到,获得积分10
27秒前
28秒前
xhxh5946完成签到,获得积分20
28秒前
充电宝应助开心泥猴桃采纳,获得10
30秒前
三伏天完成签到,获得积分10
31秒前
31秒前
繁轩星发布了新的文献求助10
32秒前
32秒前
cheyy发布了新的文献求助10
33秒前
34秒前
Binbin完成签到,获得积分10
34秒前
aldehyde应助坤坤爱文献采纳,获得10
34秒前
快飞飞完成签到 ,获得积分10
35秒前
深情安青应助土豆采纳,获得10
35秒前
zouyan233完成签到,获得积分20
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542861
求助须知:如何正确求助?哪些是违规求助? 3120134
关于积分的说明 9341680
捐赠科研通 2818200
什么是DOI,文献DOI怎么找? 1549414
邀请新用户注册赠送积分活动 722131
科研通“疑难数据库(出版商)”最低求助积分说明 712978