Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder

计算机科学 自编码 人工智能 模式识别(心理学) 编码器 降噪 假阳性悖论 噪音(视频) 语音识别 条纹 深度学习 操作系统 图像(数学) 光学 物理
作者
Meng Chen,Yongjian Li,Liting Zhang,Lei Liu,Baokun Han,Wenzhuo Shi,Shoushui Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1993-2004 被引量:19
标识
DOI:10.1109/jbhi.2024.3355960
摘要

Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination during the actual data acquisition process, resulting in erroneous or perplexing interpretations for cardiologists. To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study. The encoder of TCDAE is composed of three stacked gated convolutional layers and a Transformer encoder block with a point-wise multi-head self-attention module. To obtain minimal distortion in both time and frequency domains, we also propose a frequency weighted Huber loss function in training phase to better approximate the original signals. The TCDAE model is trained and tested on the QT Database (QTDB) and MIT-BIH Noise Stress Test Database (NSTDB), with the training data and testing data coming from different records. All the metrics perform the most robust in overall noise and separate noise intervals for RMN removal compared with the baseline methods. We also conduct generalization tests on the Icentia11k database where the TCDAE outperforms the state-of-the-art models, with a 55% reduction of the false positives in R peak detection after denoising. The TCDAE model approximates the short-term and long-term characteristics of ECG signals and has higher stability even under extreme RMN corruption. The memory consumption and inference speed of TCDAE are also feasible for its deployment in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吕豪发布了新的文献求助10
2秒前
001发布了新的文献求助10
2秒前
王赟晖完成签到,获得积分10
2秒前
2秒前
fddd发布了新的文献求助10
2秒前
JJ完成签到,获得积分10
3秒前
Dodoremi发布了新的文献求助10
4秒前
曾经的绮晴完成签到 ,获得积分20
4秒前
csn完成签到,获得积分10
4秒前
5秒前
SciGPT应助周运采纳,获得10
5秒前
5秒前
5秒前
李文英发布了新的文献求助10
6秒前
ok完成签到,获得积分10
7秒前
7秒前
7秒前
加缪应助青辣椒采纳,获得10
8秒前
科研通AI5应助陈勇杰采纳,获得10
8秒前
王赟晖发布了新的文献求助10
8秒前
Owen应助fddd采纳,获得10
8秒前
鱼y完成签到,获得积分20
9秒前
机灵鸡发布了新的文献求助10
9秒前
Sunburst完成签到,获得积分10
9秒前
鱼鱼完成签到,获得积分10
9秒前
浮游应助坚定的中蓝采纳,获得10
10秒前
csn发布了新的文献求助20
11秒前
九九完成签到,获得积分10
11秒前
lq完成签到,获得积分20
11秒前
Ning完成签到,获得积分20
11秒前
ZiZi发布了新的文献求助10
11秒前
xieyuanxing发布了新的文献求助10
12秒前
12秒前
077发布了新的文献求助10
12秒前
13秒前
14秒前
李爱国应助涟漪采纳,获得10
14秒前
八月睡大觉完成签到,获得积分10
14秒前
柒夏完成签到,获得积分10
14秒前
科研通AI2S应助周运采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913160
求助须知:如何正确求助?哪些是违规求助? 4187928
关于积分的说明 13005680
捐赠科研通 3956441
什么是DOI,文献DOI怎么找? 2169179
邀请新用户注册赠送积分活动 1187623
关于科研通互助平台的介绍 1095090