已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder

计算机科学 自编码 人工智能 模式识别(心理学) 编码器 降噪 假阳性悖论 噪音(视频) 语音识别 条纹 深度学习 操作系统 图像(数学) 光学 物理
作者
Meng Chen,Yongjian Li,Liting Zhang,Lei Liu,Baokun Han,Wenzhuo Shi,Shoushui Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 1993-2004 被引量:5
标识
DOI:10.1109/jbhi.2024.3355960
摘要

Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination during the actual data acquisition process, resulting in erroneous or perplexing interpretations for cardiologists. To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study. The encoder of TCDAE is composed of three stacked gated convolutional layers and a Transformer encoder block with a point-wise multi-head self-attention module. To obtain minimal distortion in both time and frequency domains, we also propose a frequency weighted Huber loss function in training phase to better approximate the original signals. The TCDAE model is trained and tested on the QT Database (QTDB) and MIT-BIH Noise Stress Test Database (NSTDB), with the training data and testing data coming from different records. All the metrics perform the most robust in overall noise and separate noise intervals for RMN removal compared with the baseline methods. We also conduct generalization tests on the Icentia11k database where the TCDAE outperforms the state-of-the-art models, with a 55% reduction of the false positives in R peak detection after denoising. The TCDAE model approximates the short-term and long-term characteristics of ECG signals and has higher stability even under extreme RMN corruption. The memory consumption and inference speed of TCDAE are also feasible for its deployment in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIO发布了新的文献求助10
刚刚
Hello应助Timoo采纳,获得10
1秒前
2秒前
岁华发布了新的文献求助30
4秒前
倚楼听春雨完成签到 ,获得积分10
6秒前
Yu完成签到 ,获得积分10
7秒前
花样年华发布了新的文献求助10
9秒前
寒冷志泽完成签到 ,获得积分10
9秒前
Owen应助明芬采纳,获得10
11秒前
SciGPT应助阳光沛凝采纳,获得10
12秒前
CipherSage应助文艺南松采纳,获得10
12秒前
13秒前
幼儿园老大完成签到,获得积分10
13秒前
ljy阿完成签到 ,获得积分10
14秒前
MU发布了新的文献求助10
17秒前
一一完成签到 ,获得积分10
17秒前
迦鳞完成签到 ,获得积分10
19秒前
向杨双完成签到 ,获得积分10
22秒前
seeyou完成签到 ,获得积分10
23秒前
暴躁的元灵完成签到 ,获得积分10
23秒前
23秒前
24秒前
25秒前
123完成签到 ,获得积分10
26秒前
28秒前
Lamis完成签到 ,获得积分10
29秒前
biubiuxue完成签到,获得积分10
29秒前
科目三应助HEANZ采纳,获得10
29秒前
32秒前
33秒前
minya完成签到,获得积分10
35秒前
CipherSage应助甜蜜的小甜瓜采纳,获得10
36秒前
Bystander完成签到 ,获得积分10
37秒前
40秒前
40秒前
今天没烦恼完成签到 ,获得积分10
45秒前
45秒前
文艺南松发布了新的文献求助10
47秒前
局外人发布了新的文献求助30
47秒前
HEANZ发布了新的文献求助10
47秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Formulation of a two-level electronic security and protection system for malls 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Preexisting Skin-Resident CD8 and γδ T-cell Circuits Mediate Immune Response in Merkel Cell Carcinoma and Predict Immunotherapy Efficacy 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335166
求助须知:如何正确求助?哪些是违规求助? 2964351
关于积分的说明 8613422
捐赠科研通 2643187
什么是DOI,文献DOI怎么找? 1447252
科研通“疑难数据库(出版商)”最低求助积分说明 670587
邀请新用户注册赠送积分活动 658921