FedPE: Adaptive Model Pruning-Expanding for Federated Learning on Mobile Devices

计算机科学 修剪 移动计算 移动设备 人工智能 计算机体系结构 分布式计算 机器学习 计算机网络 万维网 农学 生物
作者
Liping Yi,Xiaorong Shi,Nan Wang,Jinsong Zhang,Gang Wang,Xiaoguang Liu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 10475-10493 被引量:2
标识
DOI:10.1109/tmc.2024.3374706
摘要

Recently, federated learning (FL) as a new learning paradigm allows multi-party to collaboratively train a shared global model with privacy protection. However, vanilla FL running on heterogeneous mobile edge devices still faces three crucial challenges: communication efficiency, statistical heterogeneity, and system heterogeneity. To tackle them simultaneously, we devise FedPE , a communication-efficient and personalized federated learning framework, which allows each client to search for personalized optimal local subnets adaptive to system capacity in each round of FL. It consists of three core components: a) adaptive pruning-expanding controls model pruning or expanding according to the accuracy variations of local models, b) error compensation strategy promotes the pruned or expanded subnets to be Lottery Ticket Networks (LTNs), c) the fair aggregation rule aggregates local models with their real-time contributions as coefficients to boost the performance of the aggregated global model. The integration of the three components facilitates that only personalized optimal subnets with different footprints interact between the server and clients, which effectively reduces communication costs and enhances the robustness of FL to statistical and system heterogeneity. We also prove the convergence of FedPE and design an optimal hyperparameter searching (OHS) algorithm based on Pareto optimization to search for optimal hyperparameters for FedPE . Extensive experiments evaluated on five real-world datasets with IID or Non-IID distributions demonstrate that FedPE configured with found optimal hyperparameters achieves $1.86\times -121\times$ communication efficiency improvement with almost no accuracy degradation, presenting the best trade-off between model accuracy and communication cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
进取拼搏发布了新的文献求助10
2秒前
科研顺利完成签到,获得积分10
2秒前
清秀的凝荷完成签到,获得积分10
3秒前
3秒前
4秒前
7秒前
从容的谷云完成签到,获得积分10
8秒前
不语发布了新的文献求助120
8秒前
今后应助heidi采纳,获得10
10秒前
11秒前
11秒前
陈玉婷完成签到,获得积分10
12秒前
小葡萄发布了新的文献求助10
12秒前
爱听歌的紫菜完成签到,获得积分10
15秒前
15秒前
科目三应助欣祺采纳,获得10
15秒前
CodeCraft应助东郭寻凝采纳,获得10
16秒前
17秒前
爱吃困困饺子完成签到,获得积分10
18秒前
19秒前
19秒前
义气完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
22秒前
23秒前
23秒前
24秒前
24秒前
24秒前
25秒前
25秒前
zou完成签到,获得积分10
25秒前
明理芾发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
上官若男应助zhf采纳,获得10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483894
求助须知:如何正确求助?哪些是违规求助? 3073070
关于积分的说明 9129389
捐赠科研通 2764810
什么是DOI,文献DOI怎么找? 1517349
邀请新用户注册赠送积分活动 702089
科研通“疑难数据库(出版商)”最低求助积分说明 700954