清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data

医学 食管鳞状细胞癌 组学 基底细胞 放射治疗 肿瘤科 内科学 放化疗 生物信息学 生物
作者
Zhi‐Mao Li,Wei Liu,Xu-Li Chen,Wenzhi Wu,Xiu‐E Xu,Man-Yu Chu,Shuai-Xia Yu,En‐Min Li,He-Cheng Huang,Li‐Yan Xu
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier]
卷期号:48 (4): 102318-102318 被引量:6
标识
DOI:10.1016/j.clinre.2024.102318
摘要

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
CDX发布了新的文献求助10
6秒前
12秒前
CDX完成签到 ,获得积分10
15秒前
汎影发布了新的文献求助10
18秒前
所所应助King16采纳,获得10
22秒前
mianmian0118完成签到 ,获得积分10
29秒前
35秒前
阿尼完成签到 ,获得积分10
37秒前
King16发布了新的文献求助10
40秒前
Yidie完成签到,获得积分10
40秒前
充电宝应助牛油果战士采纳,获得10
46秒前
yushiolo完成签到 ,获得积分10
50秒前
银鱼在游完成签到,获得积分10
51秒前
51秒前
公西傲蕾完成签到,获得积分10
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
双眼皮跳蚤完成签到,获得积分0
1分钟前
大侠完成签到 ,获得积分10
1分钟前
脑洞疼应助WQ采纳,获得10
1分钟前
1分钟前
叁月二完成签到 ,获得积分10
1分钟前
tuihuo发布了新的文献求助10
1分钟前
1分钟前
小九发布了新的文献求助10
1分钟前
WQ发布了新的文献求助10
1分钟前
tuihuo完成签到,获得积分10
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
cherlia发布了新的文献求助30
1分钟前
1分钟前
1分钟前
yanxueyi完成签到 ,获得积分10
1分钟前
Dreammy完成签到,获得积分10
1分钟前
2分钟前
2分钟前
ybwei2008_163完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764738
求助须知:如何正确求助?哪些是违规求助? 5554520
关于积分的说明 15406551
捐赠科研通 4899719
什么是DOI,文献DOI怎么找? 2635938
邀请新用户注册赠送积分活动 1584129
关于科研通互助平台的介绍 1539363