Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data

医学 食管鳞状细胞癌 组学 基底细胞 放射治疗 肿瘤科 内科学 放化疗 生物信息学 生物
作者
Zhi‐Mao Li,Wei Liu,Xu-Li Chen,Wenzhi Wu,Xiu‐E Xu,Man-Yu Chu,Shuai-Xia Yu,En‐Min Li,He-Cheng Huang,Li‐Yan Xu
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier]
卷期号:48 (4): 102318-102318 被引量:3
标识
DOI:10.1016/j.clinre.2024.102318
摘要

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助深情的不评采纳,获得10
刚刚
飞快的梦易完成签到,获得积分10
1秒前
Akim应助1b采纳,获得10
1秒前
末岛完成签到,获得积分10
1秒前
sweetbearm应助benben采纳,获得10
1秒前
1秒前
2秒前
科研通AI5应助今今采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
YY完成签到,获得积分10
2秒前
首席医官完成签到,获得积分10
3秒前
坚定迎天完成签到,获得积分10
3秒前
Zzzoey发布了新的文献求助10
4秒前
搜集达人应助小罗飞飞飞采纳,获得10
4秒前
詹卫卫完成签到 ,获得积分10
4秒前
4秒前
宇_发布了新的文献求助20
4秒前
5秒前
esdeath发布了新的文献求助10
5秒前
云轩完成签到,获得积分10
5秒前
5秒前
5秒前
自然乐松发布了新的文献求助10
5秒前
yesir完成签到,获得积分10
6秒前
普雅花的等待完成签到,获得积分10
6秒前
想人陪的以云完成签到,获得积分10
7秒前
科研通AI5应助德德采纳,获得10
7秒前
NexusExplorer应助李来仪采纳,获得10
7秒前
威康宇宙发布了新的文献求助10
7秒前
小蘑菇应助润润轩轩采纳,获得10
7秒前
8秒前
8秒前
个性尔槐发布了新的文献求助10
8秒前
xiangxl完成签到,获得积分10
8秒前
fang完成签到 ,获得积分10
9秒前
汉堡包应助zhui采纳,获得10
9秒前
9秒前
万万完成签到,获得积分10
9秒前
sci完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794