Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data

医学 食管鳞状细胞癌 组学 基底细胞 放射治疗 肿瘤科 内科学 放化疗 生物信息学 生物
作者
Zhi‐Mao Li,Wei Liu,Xu-Li Chen,Wenzhi Wu,Xiu‐E Xu,Man-Yu Chu,Shuai-Xia Yu,En‐Min Li,He-Cheng Huang,Li‐Yan Xu
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier]
卷期号:48 (4): 102318-102318 被引量:5
标识
DOI:10.1016/j.clinre.2024.102318
摘要

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王多鱼完成签到,获得积分10
刚刚
超人完成签到,获得积分10
1秒前
Orange应助GDD采纳,获得10
2秒前
2秒前
小C完成签到,获得积分10
2秒前
西瓜撞地球完成签到 ,获得积分10
3秒前
花椒鱼完成签到,获得积分10
3秒前
木c完成签到,获得积分10
3秒前
ACh3完成签到,获得积分10
3秒前
科研通AI2S应助Kirito采纳,获得10
3秒前
黄小皮关注了科研通微信公众号
4秒前
5秒前
DORAAA完成签到,获得积分10
6秒前
宇yu完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
草莓月亮完成签到,获得积分20
7秒前
舒心的访冬完成签到 ,获得积分10
7秒前
lsw完成签到,获得积分10
7秒前
7秒前
18863933521完成签到,获得积分10
7秒前
7秒前
喜悦的雁山关注了科研通微信公众号
8秒前
8秒前
脑洞疼应助old杜采纳,获得10
9秒前
bkagyin应助锋zai采纳,获得10
9秒前
满意的丹蝶完成签到,获得积分20
9秒前
9秒前
10秒前
光亮蜗牛发布了新的文献求助10
10秒前
10秒前
11秒前
温暖的以旋完成签到,获得积分10
11秒前
DORAAA发布了新的文献求助30
11秒前
善良身影发布了新的文献求助10
12秒前
12秒前
隐形曼青应助陈爽er采纳,获得10
12秒前
瓜瓜完成签到,获得积分20
12秒前
13秒前
明亮灭绝发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939