Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data

医学 食管鳞状细胞癌 组学 基底细胞 放射治疗 肿瘤科 内科学 放化疗 生物信息学 生物
作者
Zhi-Mao Li,Wei Liu,X Chen,Wenzhi Wu,Xiu‐E Xu,Man-Yu Chu,Shuai-Xia Yu,En‐Min Li,He-Cheng Huang,Li–Yan Xu
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier]
卷期号:48 (4): 102318-102318 被引量:2
标识
DOI:10.1016/j.clinre.2024.102318
摘要

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
12138完成签到 ,获得积分10
刚刚
2秒前
wby发布了新的文献求助10
2秒前
3秒前
cheesy发布了新的文献求助30
4秒前
spark317发布了新的文献求助10
4秒前
崔岑羡发布了新的文献求助10
5秒前
曾经天德发布了新的文献求助20
5秒前
wjm完成签到,获得积分10
5秒前
6秒前
7秒前
12138关注了科研通微信公众号
8秒前
乐乐应助丁浩采纳,获得10
10秒前
kento应助spark317采纳,获得50
10秒前
林歌ovo完成签到 ,获得积分10
10秒前
英姑应助cheesy采纳,获得10
11秒前
儒雅祥完成签到 ,获得积分10
13秒前
柯凌完成签到 ,获得积分20
13秒前
科研通AI2S应助平常的苡采纳,获得10
14秒前
19秒前
俏皮白云完成签到 ,获得积分10
21秒前
21秒前
GU发布了新的文献求助10
23秒前
wanci应助JZa采纳,获得10
23秒前
24秒前
nixx完成签到,获得积分10
25秒前
丁浩发布了新的文献求助10
25秒前
戴小夫发布了新的文献求助10
27秒前
27秒前
不配.应助Su采纳,获得10
28秒前
吴未完成签到,获得积分10
28秒前
老北京发布了新的文献求助10
30秒前
阿文发布了新的文献求助30
31秒前
Akim应助cg采纳,获得10
31秒前
Schwann翠星石完成签到,获得积分10
33秒前
不配.应助and采纳,获得10
33秒前
34秒前
戴小夫完成签到,获得积分10
35秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079