Construction and validation of classification models for predicting the response to concurrent chemo-radiotherapy of patients with esophageal squamous cell carcinoma based on multi-omics data

医学 食管鳞状细胞癌 组学 基底细胞 放射治疗 肿瘤科 内科学 放化疗 生物信息学 生物
作者
Zhi‐Mao Li,Wei Liu,Xu-Li Chen,Wenzhi Wu,Xiu‐E Xu,Man-Yu Chu,Shuai-Xia Yu,En‐Min Li,He-Cheng Huang,Li‐Yan Xu
出处
期刊:Clinics and Research in Hepatology and Gastroenterology [Elsevier BV]
卷期号:48 (4): 102318-102318 被引量:5
标识
DOI:10.1016/j.clinre.2024.102318
摘要

Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2–0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158–0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张丽妍发布了新的文献求助10
1秒前
Viper3发布了新的文献求助30
1秒前
苦行僧完成签到,获得积分10
1秒前
希望天下0贩的0应助未了采纳,获得10
2秒前
2秒前
完美世界应助王子恒采纳,获得10
3秒前
3秒前
4652376完成签到 ,获得积分0
3秒前
yyy完成签到,获得积分10
5秒前
球闪发布了新的文献求助10
6秒前
谦让夏云完成签到,获得积分10
7秒前
donzang完成签到,获得积分10
7秒前
7秒前
风屿完成签到,获得积分10
7秒前
脑洞疼应助忧心的不言采纳,获得10
7秒前
小青椒应助wqr采纳,获得30
8秒前
周老八发布了新的文献求助10
9秒前
彩色的谷兰完成签到,获得积分10
9秒前
10秒前
球闪完成签到,获得积分10
10秒前
adeno发布了新的文献求助10
11秒前
领导范儿应助小易采纳,获得10
11秒前
13秒前
好好学习完成签到,获得积分10
14秒前
王钟萱完成签到,获得积分10
14秒前
结实白柏发布了新的文献求助10
14秒前
FashionBoy应助拼搏的从雪采纳,获得10
14秒前
MelonWong发布了新的文献求助10
15秒前
心安完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
19秒前
1111完成签到,获得积分20
19秒前
斯文败类应助homeland采纳,获得10
20秒前
nan完成签到,获得积分10
20秒前
baidu发布了新的文献求助10
21秒前
慕青应助Viper3采纳,获得30
22秒前
思源应助忧心的襄采纳,获得10
23秒前
252525发布了新的文献求助10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488