Decoding the therapeutic landscape of alpha-linolenic acid: a network pharmacology and bioinformatics investigation against cancer-related epigenetic modifiers

表观遗传学 生物 小RNA 计算生物学 小桶 癌症研究 生物信息学 遗传学 基因 转录组 基因表达
作者
Amrita Ulhe,Nidhi Sharma,Akanksha Mahajan,Rajesh B. Patil,Mahabaleshwar V. Hegde,Supriya Bhalerao,Aniket Mali
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-26 被引量:8
标识
DOI:10.1080/07391102.2023.2293267
摘要

Omega-3 (n − 3) and omega-6 (n − 6) polyunsaturated fatty acids (PUFAs) are vital for human health, but an imbalance between these types is associated with chronic diseases, including cancer. Alpha-linolenic acid (ALA), a n − 3 PUFA, shows promise as an anticancer agent in both laboratory and animal studies. However, the precise molecular mechanisms underlying ALA's actions against cancer-related epigenetic modifiers (CaEpM) remain unclear. To understand this, we employed network pharmacology (NP) and molecular docking techniques. Our study identified 51 potential ALA targets and GO and KEGG pathway analysis revealed possible molecular targets and signaling pathways of ALA against CaEpM. From PPI analysis, EZH2, KAT2B, SIRT1, KAT2A, KDM6B, EHMT2, WDR5, SETD7, SIRT2, and HDAC3 emerged as the top 10 potential targets. Additionally, GeneMANIA functional association (GMFA) network analysis of these top 10 targets was performed to enhance NP insights and explore ALA's multi-target approach. After an exhaustive analysis of the core FGN subnetwork, it became evident that 9 out of the 15 targets—namely EZH2, SUZ12, EED, PARP1, HDAC3, DNMT1, NCOR2, KAT2B, and TRRAP—manifested evidently strong and abundant interconnections among each other. Molecular docking of both top 10 targets and core FGN targets confirmed strong binding affinity between ALA and SIRT2, WDR5, KDM6B, EHMT2, HDAC3, EZH2, PARP1, and KAT2B, underscoring their roles in ALA's anti-CaEpM mechanism. Our findings suggest that ALA may target key signaling pathways related to transcriptional regulation, microRNA involvement, stem cell pluripotency and cellular senescence in cancer epigenetics. These findings illuminate ALA's potential as a multi-target agent against CaEpM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的豌豆完成签到,获得积分10
1秒前
春山发布了新的文献求助10
1秒前
1秒前
鳗鱼怀柔发布了新的文献求助10
1秒前
2秒前
科研通AI6应助牛牛很忙呀采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
张茜完成签到,获得积分10
2秒前
szzz完成签到,获得积分20
2秒前
可爱的函函应助如意修洁采纳,获得10
2秒前
breaking完成签到,获得积分10
2秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
2秒前
俞儿发布了新的文献求助10
3秒前
3秒前
小玲哥完成签到,获得积分20
3秒前
chen完成签到,获得积分10
3秒前
zhang完成签到 ,获得积分10
3秒前
3秒前
小太阳发布了新的文献求助10
3秒前
温暖霸完成签到,获得积分10
4秒前
4秒前
xxx发布了新的文献求助10
4秒前
丫丫完成签到,获得积分10
4秒前
TYJ完成签到,获得积分20
4秒前
szzz发布了新的文献求助10
5秒前
Mercury完成签到 ,获得积分10
5秒前
香蕉觅云应助ceeray23采纳,获得20
6秒前
6秒前
6秒前
bkagyin应助可爱飞荷采纳,获得10
6秒前
共享精神应助YUYAN采纳,获得10
6秒前
绿豆鲨发布了新的文献求助10
7秒前
科研小白完成签到,获得积分10
7秒前
笨笨的凡梅完成签到 ,获得积分10
7秒前
谦让初柳发布了新的文献求助10
8秒前
雪白的稀发布了新的文献求助10
8秒前
斯文败类应助冲鸭采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
蟹老板完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284