Distributed DNN Inference With Fine-Grained Model Partitioning in Mobile Edge Computing Networks

计算机科学 异步通信 推论 分布式计算 边缘设备 服务器 移动设备 边缘计算 GSM演进的增强数据速率 移动边缘计算 块(置换群论) 任务(项目管理) 计算机网络 人工智能 云计算 几何学 数学 管理 经济 操作系统
作者
Hui Li,Xiuhua Li,Qilin Fan,Qiang He,Xiaofei Wang,Victor C. M. Leung
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 9060-9074 被引量:8
标识
DOI:10.1109/tmc.2024.3357874
摘要

Model partitioning is a promising technique for improving the efficiency of distributed inference by executing partial deep neural network (DNN) models on edge servers (ESs) or Internet-of-Things (IoT) devices. However, due to heterogeneous resources of ESs and IoT devices in mobile edge computing (MEC) networks, it is non-trivial to guarantee the DNN inference speed to satisfy specific delay constraints. Meanwhile, many existing DNN models have a deep and complex architecture with numerous DNN blocks, which leads to a huge search space for fine-grained model partitioning. To address these challenges, we investigate distributed DNN inference with fine-grained model partitioning, with collaborations between ESs and IoT devices. We formulate the problem and propose a multi-task learning based asynchronous advantage actor-critic approach to find a competitive model partitioning policy that reduces DNN inference delay. Specifically, we combine the shared layers of actor-network and critic-network via soft parameter sharing, and expand the output layer into multiple branches to determine the model partitioning policy for each DNN block individually. Experiment results demonstrate that the proposed approach outperforms state-of-the-art approaches by reducing total inference delay, edge inference delay and local inference delay by an average of 4.76%, 10.04% and 8.03% in the considered MEC networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助牛马小刘采纳,获得10
刚刚
酷波er应助大力的诗蕾采纳,获得10
1秒前
包宇发布了新的文献求助10
1秒前
Silvia应助7444采纳,获得10
2秒前
CodeCraft应助7444采纳,获得10
2秒前
可爱的函函应助xiao采纳,获得10
3秒前
liyingbo发布了新的文献求助10
4秒前
Whim发布了新的文献求助50
4秒前
星黛Lu完成签到,获得积分10
4秒前
4秒前
slgzhangtao完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
核动力驴应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
wwy应助科研通管家采纳,获得10
5秒前
wuhuhu应助科研通管家采纳,获得10
5秒前
核动力驴应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
核动力驴应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
bai完成签到,获得积分20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
wwy应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
核动力驴应助科研通管家采纳,获得10
6秒前
想要发SCI的彭于晏完成签到,获得积分20
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077