Deep neural network for learning wave scattering and interference of underwater acoustics

物理 声学 干扰(通信) 水下 人工神经网络 散射 光学 人工智能 电信 频道(广播) 计算机科学 海洋学 地质学
作者
Wrik Mallik,Rajeev K. Jaiman,Jasmin Jelovica
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:3
标识
DOI:10.1063/5.0188250
摘要

It is challenging to construct generalized physical models of underwater wave propagation owing to their complex physics and widely varying environmental parameters and dynamical scales. In this article, we present a deep convolutional recurrent autoencoder network (CRAN) for data-driven learning of complex underwater wave scattering and interference. We specifically consider the dynamics of underwater acoustic scattering from various non-uniform seamount shapes leading to complex wave interference patterns of back-scattered and forward-propagated waves. The CRAN consists of a convolutional autoencoder for learning low-dimensional system representation and a long short-term memory (LSTM)-based recurrent neural network for predicting system evolution in low dimensions. The convolutional autoencoder enables efficient dimension reduction of wave propagation by independently learning global and localized wave features. To improve the time horizon of wave dynamics prediction, we introduce an LSTM architecture with a single-shot learning mechanism and optimal time-delayed data embedding. On training the CRAN over 30 cases containing various seamount geometries and acoustic source frequencies, we can predict wave propagation up to a time horizon of 5 times the initiation sequence length for 15 out-of-training cases with a mean L2 error of approximately 10%. For selected out-of-training cases, the prediction time horizon could be increased to 6 times the initiation sequence length. Importantly, such predictions are obtained with physically consistent wave scattering and wave interference patterns and at 50% lower L2 error compared to routinely use standard LSTMs. These results demonstrate the potential of employing such deep neural networks for learning complex underwater ocean acoustic propagation physics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小圆发布了新的文献求助10
刚刚
lipeng完成签到,获得积分10
刚刚
hf完成签到,获得积分10
1秒前
1秒前
英姑应助余甘木采纳,获得10
1秒前
风趣的胜应助王玉采纳,获得10
1秒前
1秒前
我是老大应助wwz采纳,获得10
1秒前
勤奋的琳完成签到,获得积分10
2秒前
Tomice发布了新的文献求助10
2秒前
ding应助能能鹤采纳,获得10
3秒前
enen发布了新的文献求助10
3秒前
周周发布了新的文献求助10
3秒前
所所应助听枫采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
香蕉觅云应助XUNGEER11采纳,获得10
4秒前
4秒前
扭扭车发布了新的文献求助10
4秒前
龙哥发布了新的文献求助10
5秒前
5秒前
洪亮完成签到,获得积分0
5秒前
6秒前
drfy123发布了新的文献求助10
6秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
7秒前
7秒前
Little2发布了新的文献求助10
8秒前
盛夏之末应助太阳吖采纳,获得10
8秒前
星辰大海应助mrmrer采纳,获得10
8秒前
hhh完成签到,获得积分20
9秒前
逸鑫林完成签到 ,获得积分10
10秒前
大模型应助mirayq采纳,获得10
10秒前
10秒前
Ava应助21采纳,获得10
11秒前
11秒前
执着谷兰发布了新的文献求助30
11秒前
苻慕梅完成签到,获得积分10
12秒前
可爱的函函应助drfy123采纳,获得10
13秒前
leopardymk发布了新的文献求助10
13秒前
大气沧海发布了新的文献求助10
13秒前
Zhang完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199