Multistage Progressive Single-Image Dehazing Network With Feature Physics Model

阶段(地层学) 特征(语言学) 计算机科学 图像(数学) 计算机视觉 人工智能 特征提取 计算机图形学(图像) 物理 地质学 古生物学 哲学 语言学
作者
Haitao Yin,Pengcheng Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:3
标识
DOI:10.1109/tim.2024.3374305
摘要

Deep learning has recently shown superior performance for single image dehazing. Most deep dehazing networks either estimate the parameters of atmospheric scattering model through convolutional neural network, or predict the hazy-free image without physical prior. These typical approaches ignore the dehazing mechanism in feature space. In addition, single encoder-decoder architecture is widely utilized to construct dehazing network, but it may suffer from limited semantic-level multi-scale contextual dependencies. To tackle these issues, we firstly propose a novel Physical model based Feature Enhancement Dehazing (PFED) block, which consists of a feature enhancement block and a feature dehazing block with two fully convolutional sub-networks. Such fully convolutional module can improve the adaptivity of non-uniform feature dehazing. On the basis of PFED block, we develop a Multi-Stage Progressive Dehazing Network (MSPD-Net), which progressively removes haze in a multi-stage architecture. In addition, the selective kernel feature fusion scheme is used to carry out cross-scale and cross-stage fusion, which can enable the model to capture the intra- and inter-stage interactions, respectively. Extensive experiments on three popular datasets demonstrate that MSPD-Net is comparable or even superior to the state-of-the-art methods. Specifically, MSPD-Net exceeds the Transformer based DehazeFormer-M 1.389dB on the SOTS-indoor dataset. Furthermore, a series of ablation experiments prove that the key components of our method can boost performance effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助tomato采纳,获得10
刚刚
西方印迹大王完成签到 ,获得积分20
1秒前
想躺平的咸鱼人完成签到,获得积分10
1秒前
chenhaiyi发布了新的文献求助30
1秒前
kingwill应助Vanessa_531采纳,获得20
2秒前
在水一方应助壮观冰岚采纳,获得10
2秒前
营养小杨应助ccmxigua采纳,获得10
2秒前
3秒前
杨桃发布了新的文献求助10
4秒前
5秒前
5秒前
ironsilica发布了新的文献求助10
6秒前
Clean完成签到,获得积分10
6秒前
7秒前
7秒前
yerenjie完成签到 ,获得积分10
8秒前
zhouyu完成签到,获得积分10
8秒前
8秒前
Lisianthus完成签到 ,获得积分10
8秒前
kakiyu发布了新的文献求助10
9秒前
xx发布了新的文献求助10
10秒前
Clean发布了新的文献求助10
11秒前
饼子发布了新的文献求助10
11秒前
xiu发布了新的文献求助10
11秒前
共享精神应助四叶草采纳,获得10
11秒前
良辰应助Sue kong采纳,获得10
12秒前
缺粥发布了新的文献求助10
12秒前
科研小白完成签到,获得积分10
13秒前
在水一方应助大力日记本采纳,获得20
13秒前
爆米花应助无心的土豆采纳,获得10
13秒前
谨慎乌完成签到,获得积分10
14秒前
清秋若月应助鱼咬羊采纳,获得10
15秒前
eternal完成签到,获得积分10
15秒前
kakiyu完成签到,获得积分10
16秒前
wise111完成签到,获得积分10
18秒前
不止一点忙的小白完成签到,获得积分10
19秒前
墨竹青浅完成签到 ,获得积分20
20秒前
跳跃鱼发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551943
求助须知:如何正确求助?哪些是违规求助? 3128370
关于积分的说明 9377451
捐赠科研通 2827382
什么是DOI,文献DOI怎么找? 1554345
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714842