Defect engineering Unveiled: Enhancing potassium storage in expanded graphite Anode

阳极 电化学 插层(化学) 石墨 材料科学 化学工程 吸附 离子 电极 纳米技术 钾离子电池 化学 无机化学 复合材料 冶金 磷酸钒锂电池 有机化学 物理化学 工程类
作者
Kai-Yang Zhang,Han‐Hao Liu,Meng‐Yuan Su,Jialin Yang,Xiaotong Wang,Edison Huixiang Ang,Zhen‐Yi Gu,Shuo-Hang Zheng,Yong-Li Heng,Hao‐Jie Liang,Geyu Lu,Shuying Li,Xing‐Long Wu
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
被引量:1
标识
DOI:10.1016/j.jcis.2024.03.084
摘要

Expanded graphite (EG) stands out as a promising material for the negative electrode in potassium-ion batteries. However, its full potential is hindered by the limited diffusion pathway and storage sites for potassium ions, restricting the improvement of its electrochemical performance. To overcome this challenge, defect engineering emerges as a highly effective strategy to enhance the adsorption and reaction kinetics of potassium ions on electrode materials. This study delves into the specific effectiveness of defects in facilitating potassium storage, exploring the impact of defect-rich structures on dynamic processes. Employing ball milling, we introduce surface defects in EG, uncovering unique effects on its electrochemical behavior. These defects exhibit a remarkable ability to adsorb a significant quantity of potassium ions, facilitating the subsequent intercalation of potassium ions into the graphite structure. Consequently, this process leads to a higher potassium voltage. Furthermore, the generation of a diluted stage compound is more pronounced under high voltage conditions, promoting the progression of multiple stage reactions. Consequently, the EG sample post-ball milling demonstrates a notable capacity of 286.2 mAh/g at a current density of 25 mA g−1, showcasing an outstanding rate capability that surpasses that of pristine EG. This research not only highlights the efficacy of defect engineering in carbon materials but also provides unique insights into the specific manifestations of defects on dynamic processes, contributing to the advancement of potassium-ion battery technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助李善聪采纳,获得10
1秒前
bkagyin应助小韩采纳,获得10
1秒前
邮箱登录完成签到,获得积分10
2秒前
五月夏至完成签到,获得积分10
3秒前
小马甲应助luululu采纳,获得10
4秒前
霍夫曼降解完成签到,获得积分10
4秒前
5秒前
我是老大应助秋子骞采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
Cat应助科研通管家采纳,获得20
8秒前
Phosphene应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
Louise完成签到,获得积分10
9秒前
10秒前
十七完成签到 ,获得积分10
10秒前
嘘嘘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
斯文谷秋发布了新的文献求助10
14秒前
爱听歌雪旋完成签到 ,获得积分10
14秒前
刘刈完成签到 ,获得积分10
15秒前
嗨嗨嗨嗨发布了新的文献求助10
15秒前
15秒前
Owen应助热心市民小红花采纳,获得10
15秒前
SN完成签到,获得积分10
16秒前
16秒前
17秒前
善学以致用应助jeronimo采纳,获得10
17秒前
clearsky完成签到,获得积分20
18秒前
maox1aoxin应助最长的旅途采纳,获得30
18秒前
19秒前
刘刈关注了科研通微信公众号
19秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Experimental investigation of the mechanics of explosive welding by means of a liquid analogue 1060
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 600
大平正芳: 「戦後保守」とは何か 550
Sustainability in ’Tides Chemistry 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3007314
求助须知:如何正确求助?哪些是违规求助? 2666740
关于积分的说明 7232038
捐赠科研通 2303932
什么是DOI,文献DOI怎么找? 1221678
科研通“疑难数据库(出版商)”最低求助积分说明 595253
版权声明 593410