I Know This Looks Bad, But I Can Explain: Understanding When AI Should Explain Actions In Human-AI Teams

团队合作 感知 透明度(行为) 功能(生物学) 计算机科学 人工智能应用 心理学 人工智能 知识管理 政治学 计算机安全 进化生物学 生物 神经科学 法学
作者
Rui Zhang,Christopher Flathmann,Geoff Musick,Beau G. Schelble,Nathan J. McNeese,Bart P. Knijnenburg,Wen Duan
出处
期刊:ACM transactions on interactive intelligent systems [Association for Computing Machinery]
卷期号:14 (1): 1-23 被引量:5
标识
DOI:10.1145/3635474
摘要

Explanation of artificial intelligence (AI) decision-making has become an important research area in human–computer interaction (HCI) and computer-supported teamwork research. While plenty of research has investigated AI explanations with an intent to improve AI transparency and human trust in AI, how AI explanations function in teaming environments remains unclear. Given that a major benefit of AI giving explanations is to increase human trust understanding how AI explanations impact human trust is crucial to effective human-AI teamwork. An online experiment was conducted with 156 participants to explore this question by examining how a teammate’s explanations impact the perceived trust of the teammate and the effectiveness of the team and how these impacts vary based on whether the teammate is a human or an AI. This study shows that explanations facilitate trust in AI teammates when explaining why AI disobeyed humans’ orders but hindered trust when explaining why an AI lied to humans. In addition, participants’ personal characteristics (e.g., their gender and the individual’s ethical framework) impacted their perceptions of AI teammates both directly and indirectly in different scenarios. Our study contributes to interactive intelligent systems and HCI by shedding light on how an AI teammate’s actions and corresponding explanations are perceived by humans while identifying factors that impact trust and perceived effectiveness. This work provides an initial understanding of AI explanations in human-AI teams, which can be used for future research to build upon in exploring AI explanation implementation in collaborative environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joe_liu发布了新的文献求助10
刚刚
知鱼完成签到,获得积分10
刚刚
西西弗发布了新的文献求助10
刚刚
ghmghm9910完成签到,获得积分10
刚刚
刚刚
传奇3应助kyt采纳,获得10
1秒前
lzs完成签到,获得积分20
2秒前
阿欣完成签到,获得积分10
2秒前
3秒前
Akim应助高大诗柳采纳,获得10
3秒前
顺心不斜发布了新的文献求助30
3秒前
YELLOW完成签到,获得积分10
4秒前
着急的盼山完成签到,获得积分20
4秒前
哇哈哈完成签到,获得积分10
5秒前
mhl11应助liuliliu采纳,获得10
5秒前
小孟吖发布了新的文献求助10
5秒前
lzs发布了新的文献求助10
6秒前
6秒前
阿飞完成签到,获得积分10
6秒前
ghmghm9910发布了新的文献求助30
7秒前
暴躁的梦桃完成签到,获得积分20
7秒前
Jasper应助123采纳,获得10
7秒前
7秒前
英俊的铭应助六号线采纳,获得10
8秒前
十里桃花不徘徊完成签到,获得积分10
9秒前
9秒前
牛牛驳回了SciGPT应助
9秒前
junyang完成签到,获得积分10
9秒前
TIANTIAN完成签到,获得积分10
10秒前
phoenix发布了新的文献求助10
10秒前
Owen应助li采纳,获得10
10秒前
10秒前
沉默的小耳朵完成签到 ,获得积分10
11秒前
hhhhhh完成签到,获得积分10
11秒前
12秒前
英俊的铭应助无奈的萝采纳,获得10
13秒前
Lwssss发布了新的文献求助10
13秒前
岑戎发布了新的文献求助30
13秒前
佳佳吖完成签到,获得积分10
13秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257464
求助须知:如何正确求助?哪些是违规求助? 2899400
关于积分的说明 8305459
捐赠科研通 2568655
什么是DOI,文献DOI怎么找? 1395219
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630767