Modelling-based joint embedding of histology and genomics using canonical correlation analysis for breast cancer survival prediction

乳腺癌 典型相关 计算机科学 嵌入 概率逻辑 人工智能 基因组学 相关性 机器学习 数据挖掘 模式识别(心理学) 癌症 医学 数学 基因组 生物 内科学 基因 几何学 生物化学
作者
Vidhya Subramanian,Tanveer Syeda-Mahmood,N. Minh
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:149: 102787-102787 被引量:1
标识
DOI:10.1016/j.artmed.2024.102787
摘要

Traditional approaches to predicting breast cancer patients’ survival outcomes were based on clinical subgroups, the PAM50 genes, or the histological tissue’s evaluation. With the growth of multi-modality datasets capturing diverse information (such as genomics, histology, radiology and clinical data) about the same cancer, information can be integrated using advanced tools and have improved survival prediction. These methods implicitly exploit the key observation that different modalities originate from the same cancer source and jointly provide a complete picture of the cancer. In this work, we investigate the benefits of explicitly modelling multi-modality data as originating from the same cancer under a probabilistic framework. Specifically, we consider histology and genomics as two modalities originating from the same breast cancer under a probabilistic graphical model (PGM). We construct maximum likelihood estimates of the PGM parameters based on canonical correlation analysis (CCA) and then infer the underlying properties of the cancer patient, such as survival. Equivalently, we construct CCA-based joint embeddings of the two modalities and input them to a learnable predictor. Real-world properties of sparsity and graph-structures are captured in the penalized variants of CCA (pCCA) and are better suited for cancer applications. For generating richer multi-dimensional embeddings with pCCA, we introduce two novel embedding schemes that encourage orthogonality to generate more informative embeddings. The efficacy of our proposed prediction pipeline is first demonstrated via low prediction errors of the hidden variable and the generation of informative embeddings on simulated data. When applied to breast cancer histology and RNA-sequencing expression data from The Cancer Genome Atlas (TCGA), our model can provide survival predictions with average concordance-indices of up to 68.32% along with interpretability. We also illustrate how the pCCA embeddings can be used for survival analysis through Kaplan–Meier curves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助成就的书包采纳,获得10
刚刚
阎冷雁完成签到,获得积分10
刚刚
3秒前
4秒前
小张同学完成签到 ,获得积分10
5秒前
6秒前
辽沈最美女博完成签到,获得积分10
7秒前
8秒前
haishixigua完成签到,获得积分10
9秒前
默默的金针菇完成签到 ,获得积分20
9秒前
11秒前
12秒前
13秒前
小白发布了新的文献求助10
14秒前
烟花应助YI点半的飞机场采纳,获得10
14秒前
14秒前
yao chen发布了新的文献求助10
15秒前
成就的书包完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
zty完成签到,获得积分10
19秒前
摇摇奶昔发布了新的文献求助10
21秒前
22秒前
yao chen完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
freshman3005发布了新的文献求助10
27秒前
不配.应助谨慎不二采纳,获得10
27秒前
lwh104完成签到,获得积分10
28秒前
搞怪沛白发布了新的文献求助30
29秒前
爱幻想的青柠给爱幻想的青柠的求助进行了留言
30秒前
会会会发布了新的文献求助10
31秒前
34秒前
34秒前
酷波er应助dqq采纳,获得10
37秒前
搞怪沛白完成签到,获得积分10
38秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825