Modelling-based joint embedding of histology and genomics using canonical correlation analysis for breast cancer survival prediction

乳腺癌 典型相关 计算机科学 嵌入 概率逻辑 人工智能 基因组学 相关性 机器学习 数据挖掘 模式识别(心理学) 癌症 医学 数学 基因组 生物 内科学 基因 几何学 生物化学
作者
Vidhya Subramanian,Tanveer Syeda-Mahmood,N. Minh
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:149: 102787-102787 被引量:1
标识
DOI:10.1016/j.artmed.2024.102787
摘要

Traditional approaches to predicting breast cancer patients’ survival outcomes were based on clinical subgroups, the PAM50 genes, or the histological tissue’s evaluation. With the growth of multi-modality datasets capturing diverse information (such as genomics, histology, radiology and clinical data) about the same cancer, information can be integrated using advanced tools and have improved survival prediction. These methods implicitly exploit the key observation that different modalities originate from the same cancer source and jointly provide a complete picture of the cancer. In this work, we investigate the benefits of explicitly modelling multi-modality data as originating from the same cancer under a probabilistic framework. Specifically, we consider histology and genomics as two modalities originating from the same breast cancer under a probabilistic graphical model (PGM). We construct maximum likelihood estimates of the PGM parameters based on canonical correlation analysis (CCA) and then infer the underlying properties of the cancer patient, such as survival. Equivalently, we construct CCA-based joint embeddings of the two modalities and input them to a learnable predictor. Real-world properties of sparsity and graph-structures are captured in the penalized variants of CCA (pCCA) and are better suited for cancer applications. For generating richer multi-dimensional embeddings with pCCA, we introduce two novel embedding schemes that encourage orthogonality to generate more informative embeddings. The efficacy of our proposed prediction pipeline is first demonstrated via low prediction errors of the hidden variable and the generation of informative embeddings on simulated data. When applied to breast cancer histology and RNA-sequencing expression data from The Cancer Genome Atlas (TCGA), our model can provide survival predictions with average concordance-indices of up to 68.32% along with interpretability. We also illustrate how the pCCA embeddings can be used for survival analysis through Kaplan–Meier curves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳绿柳发布了新的文献求助10
1秒前
1秒前
可爱的函函应助一位用户采纳,获得10
2秒前
科研通AI6应助妍妍采纳,获得10
2秒前
海棠听风完成签到,获得积分10
4秒前
李健应助纯真绿蕊采纳,获得10
4秒前
磷酸瞳完成签到,获得积分10
4秒前
4秒前
ZYL发布了新的文献求助10
4秒前
顾矜应助zjujirenjie采纳,获得10
4秒前
早晚会疯完成签到 ,获得积分10
5秒前
5秒前
浮游应助倒霉蛋采纳,获得10
6秒前
111发布了新的文献求助10
6秒前
Ava应助等待凡英采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
JRY5678发布了新的文献求助10
9秒前
五颜六色的白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
苹果白凡发布了新的文献求助10
12秒前
趣乐多发布了新的文献求助10
13秒前
周舟完成签到 ,获得积分10
14秒前
好叭发布了新的文献求助10
15秒前
传奇3应助寂寞的松采纳,获得30
15秒前
zjujirenjie发布了新的文献求助10
15秒前
JJJJJJ完成签到,获得积分10
15秒前
牛俊生发布了新的文献求助20
17秒前
科研通AI6应助柳绿柳采纳,获得10
22秒前
22秒前
英姑应助斯文可仁采纳,获得10
23秒前
9090y完成签到,获得积分10
23秒前
科研通AI5应助longjiafang采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
李健的小迷弟应助好叭采纳,获得10
25秒前
善学以致用应助梁大力采纳,获得10
26秒前
上彐下火完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942724
求助须知:如何正确求助?哪些是违规求助? 4208247
关于积分的说明 13081614
捐赠科研通 3987373
什么是DOI,文献DOI怎么找? 2183053
邀请新用户注册赠送积分活动 1198695
关于科研通互助平台的介绍 1111081