微塑料
土壤水分
镉
环境科学
尿素酶
孵化
环境化学
化学
酶
土壤科学
生物化学
有机化学
作者
Quanying Wang,Qirong Wang,Tianye Wang,Shaoqing Zhang,Hongwen Yu
标识
DOI:10.1016/j.scitotenv.2024.170541
摘要
Microplastics (MPs) can co-occur widely with heavy metals in soil. This study intended to investigate the influences of the co-exposure of polyethylene MPs (0.5 %, w/w) and cadmium (Cd) in black soil on the Cd distribution, enzyme activities, and bacterial communities in both bulk soil and different sized soil aggregates (> 1, 0.50-1, 0.25-0.50, and < 0.25 mm aggregates) after a 90-day incubation. Our results showed that the existence of MPs increased the distributions of Cd in >1 mm and < 0.25 mm soil aggregates and decreased its distributions in 0.50-1 mm and 0.25-0.50 mm soil aggregates. About 12.15 %-17.65 % and 9.03 %-11.13 % of Cd were distributed in the exchangeable and oxidizable forms in bulk soil and various sized soil aggregates after the addition of MPs which were higher than those in the only Cd-treated soil (11.17 %-14.72 % and 8.66 %-10.43 %, respectively), while opposite tendency was found for Cd in the reducible form. Urease and β-glucosidase activities in the Cd-treated soils were 1.14-1.18 and 1.07-1.31 times higher than those in the Cd-MPs treated soils. MPs disturbed soil bacterial community at phylum level and increased the bacteria richness in bulk soil. The levels of predicted functional genes which are linked to the biodegradation and metabolism of exogenous substances and soil C and N cycles were altered by the co-exposure of Cd and MPs. The findings of this study could help deepen our knowledge about the responses of soil properties, especially microbial community, to the co-occurrence of MPs and heavy metals in soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI