Melt Pool Size Prediction of Laser Powder Bed Fusion by Process and Image Feature Fusion

随机性 过程(计算) 融合 特征(语言学) 人工智能 人工神经网络 模式识别(心理学) 材料科学 计算机科学 数学 统计 语言学 操作系统 哲学
作者
Qisheng Wang,Yamin Mao,Kunpeng Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3341124
摘要

Real-time monitoring and control of the melt pool size during the laser powder bed fusion (L-PBF) can potentially improve the forming quality of the parts. Most existing studies predict the size based on process features, but the same building conditions may lead to different melt pool evolutions due to the inherent randomness of the L-PBF process. A novel prediction model based on process and image feature fusion is proposed in this article. First, process features that reflect the complex characteristics of the scanning process are extracted according to the process parameters and scanning strategy. Subsequently, the melt pool sizes are determined by the methods of three-scale threshold and least-square fitting. Finally, process features and melt pool features from previous scanning time periods are integrated by inputting them into recurrent neural networks (RNNs) in scanning order. The testing results indicate that the approach could better capture both the overall change trend and the inherent randomness of the melt pool. In addition, the gated recurrent unit (GRU) with a forgetting mechanism and fewer training parameters has better prediction performance compared with other typical RNNs, and the mean absolute percentage error (MAPE) of the melt pool area is 14.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风祺发布了新的文献求助10
刚刚
tt发布了新的文献求助10
刚刚
权翼完成签到,获得积分10
刚刚
田様应助sharp采纳,获得10
1秒前
谢丹完成签到 ,获得积分10
1秒前
kkk发布了新的文献求助10
1秒前
1秒前
草莓发布了新的文献求助10
1秒前
1秒前
2秒前
搞怪藏今完成签到 ,获得积分10
2秒前
苹果初阳完成签到,获得积分10
2秒前
3秒前
3秒前
乐乐应助大力的安阳采纳,获得30
4秒前
悦耳冰萍完成签到,获得积分10
4秒前
生动不平发布了新的文献求助10
4秒前
4秒前
LittleWang完成签到,获得积分10
4秒前
biowming完成签到,获得积分10
5秒前
5秒前
MgZn发布了新的文献求助10
6秒前
Mingyue123完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
碧蓝之柔完成签到,获得积分10
7秒前
方方土应助简简子采纳,获得80
7秒前
狗狗发布了新的文献求助200
7秒前
8秒前
8秒前
9秒前
9秒前
LLL发布了新的文献求助10
9秒前
9秒前
派3发布了新的文献求助10
10秒前
10秒前
朱良宇发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498