Melt Pool Size Prediction of Laser Powder Bed Fusion by Process and Image Feature Fusion

随机性 过程(计算) 融合 特征(语言学) 人工智能 人工神经网络 模式识别(心理学) 材料科学 计算机科学 数学 统计 语言学 操作系统 哲学
作者
Qisheng Wang,Yamin Mao,Kunpeng Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3341124
摘要

Real-time monitoring and control of the melt pool size during the laser powder bed fusion (L-PBF) can potentially improve the forming quality of the parts. Most existing studies predict the size based on process features, but the same building conditions may lead to different melt pool evolutions due to the inherent randomness of the L-PBF process. A novel prediction model based on process and image feature fusion is proposed in this article. First, process features that reflect the complex characteristics of the scanning process are extracted according to the process parameters and scanning strategy. Subsequently, the melt pool sizes are determined by the methods of three-scale threshold and least-square fitting. Finally, process features and melt pool features from previous scanning time periods are integrated by inputting them into recurrent neural networks (RNNs) in scanning order. The testing results indicate that the approach could better capture both the overall change trend and the inherent randomness of the melt pool. In addition, the gated recurrent unit (GRU) with a forgetting mechanism and fewer training parameters has better prediction performance compared with other typical RNNs, and the mean absolute percentage error (MAPE) of the melt pool area is 14.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风筝天空发布了新的文献求助10
刚刚
快乐滑板应助mhpvv采纳,获得10
刚刚
cherish发布了新的文献求助10
2秒前
土豆发布了新的文献求助10
3秒前
3秒前
hdnej完成签到,获得积分10
3秒前
传奇3应助lz采纳,获得30
3秒前
6秒前
有风的地方完成签到 ,获得积分10
6秒前
7秒前
7秒前
彭于晏应助volition采纳,获得10
8秒前
8秒前
小二郎应助顺利萃采纳,获得10
9秒前
生动慕儿关注了科研通微信公众号
9秒前
小蘑菇应助mjy123采纳,获得10
10秒前
STZHEN完成签到,获得积分10
10秒前
Amon发布了新的文献求助10
11秒前
爱吃米线完成签到,获得积分20
12秒前
12秒前
12秒前
朴实如波发布了新的文献求助10
13秒前
14秒前
14秒前
cff完成签到,获得积分10
15秒前
科研通AI6应助活泼的觅云采纳,获得10
15秒前
15秒前
Fengzhen007完成签到,获得积分10
15秒前
hdnej发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
土豆完成签到,获得积分10
17秒前
Jasper应助wwww采纳,获得10
17秒前
18秒前
张一二完成签到,获得积分10
18秒前
lwq发布了新的文献求助80
18秒前
观心完成签到,获得积分10
19秒前
华仔应助大意的饼干采纳,获得30
19秒前
爱喝可乐的猫完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548