Melt Pool Size Prediction of Laser Powder Bed Fusion by Process and Image Feature Fusion

随机性 过程(计算) 融合 特征(语言学) 人工智能 人工神经网络 模式识别(心理学) 材料科学 计算机科学 数学 统计 语言学 哲学 操作系统
作者
Qisheng Wang,Yamin Mao,Kunpeng Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3341124
摘要

Real-time monitoring and control of the melt pool size during the laser powder bed fusion (L-PBF) can potentially improve the forming quality of the parts. Most existing studies predict the size based on process features, but the same building conditions may lead to different melt pool evolutions due to the inherent randomness of the L-PBF process. A novel prediction model based on process and image feature fusion is proposed in this article. First, process features that reflect the complex characteristics of the scanning process are extracted according to the process parameters and scanning strategy. Subsequently, the melt pool sizes are determined by the methods of three-scale threshold and least-square fitting. Finally, process features and melt pool features from previous scanning time periods are integrated by inputting them into recurrent neural networks (RNNs) in scanning order. The testing results indicate that the approach could better capture both the overall change trend and the inherent randomness of the melt pool. In addition, the gated recurrent unit (GRU) with a forgetting mechanism and fewer training parameters has better prediction performance compared with other typical RNNs, and the mean absolute percentage error (MAPE) of the melt pool area is 14.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闹心发布了新的文献求助10
刚刚
LIJIngcan发布了新的文献求助10
1秒前
Kate发布了新的文献求助10
1秒前
3秒前
3秒前
老北京发布了新的文献求助10
4秒前
JKA23发布了新的文献求助10
5秒前
6秒前
杨丽发布了新的文献求助10
6秒前
7秒前
泰山球迷发布了新的文献求助10
7秒前
8秒前
小w爱吃锅包肉应助口香糖采纳,获得10
8秒前
9秒前
9秒前
赖同学发布了新的文献求助20
10秒前
10秒前
Z_Miaom完成签到,获得积分10
11秒前
知北完成签到,获得积分10
12秒前
12秒前
Sir.夏季风发布了新的文献求助10
13秒前
佳雯发布了新的文献求助10
13秒前
千里完成签到,获得积分10
13秒前
13秒前
JKA23完成签到,获得积分10
14秒前
2026毕业啦发布了新的文献求助10
14秒前
15秒前
15秒前
郗妫完成签到,获得积分10
15秒前
星辰大海应助Z_Miaom采纳,获得10
16秒前
16秒前
端庄诗翠发布了新的文献求助30
18秒前
18秒前
科研通AI5应助周周采纳,获得20
19秒前
19秒前
斯文败类应助ximei采纳,获得10
20秒前
21秒前
科目三应助贪玩蔡徐坤采纳,获得10
21秒前
21秒前
Lucas应助刘永红采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590