亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Melt Pool Size Prediction of Laser Powder Bed Fusion by Process and Image Feature Fusion

随机性 过程(计算) 融合 特征(语言学) 人工智能 人工神经网络 模式识别(心理学) 材料科学 计算机科学 数学 统计 语言学 操作系统 哲学
作者
Qisheng Wang,Yamin Mao,Kunpeng Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:2
标识
DOI:10.1109/tim.2023.3341124
摘要

Real-time monitoring and control of the melt pool size during the laser powder bed fusion (L-PBF) can potentially improve the forming quality of the parts. Most existing studies predict the size based on process features, but the same building conditions may lead to different melt pool evolutions due to the inherent randomness of the L-PBF process. A novel prediction model based on process and image feature fusion is proposed in this article. First, process features that reflect the complex characteristics of the scanning process are extracted according to the process parameters and scanning strategy. Subsequently, the melt pool sizes are determined by the methods of three-scale threshold and least-square fitting. Finally, process features and melt pool features from previous scanning time periods are integrated by inputting them into recurrent neural networks (RNNs) in scanning order. The testing results indicate that the approach could better capture both the overall change trend and the inherent randomness of the melt pool. In addition, the gated recurrent unit (GRU) with a forgetting mechanism and fewer training parameters has better prediction performance compared with other typical RNNs, and the mean absolute percentage error (MAPE) of the melt pool area is 14.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mirr完成签到 ,获得积分10
5秒前
7秒前
VDC完成签到,获得积分0
8秒前
9秒前
搜集达人应助LEETHEO采纳,获得10
9秒前
程住气完成签到 ,获得积分10
12秒前
17秒前
ceeray23应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
yyds应助科研通管家采纳,获得80
18秒前
yyds应助科研通管家采纳,获得80
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
清脆雪糕完成签到,获得积分10
18秒前
TAT完成签到 ,获得积分10
19秒前
赘婿应助橱窗采纳,获得10
19秒前
清脆雪糕发布了新的文献求助10
21秒前
合适雅绿完成签到 ,获得积分10
22秒前
VDC发布了新的文献求助10
27秒前
32秒前
橱窗发布了新的文献求助10
37秒前
38秒前
45秒前
cccxq发布了新的文献求助10
51秒前
仙人不指路完成签到 ,获得积分10
55秒前
CodeCraft应助cccxq采纳,获得10
55秒前
FashionBoy应助橱窗采纳,获得10
57秒前
1分钟前
dax大雄完成签到 ,获得积分10
1分钟前
1分钟前
科研小新发布了新的文献求助10
1分钟前
橱窗完成签到,获得积分10
1分钟前
1分钟前
绿柏完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332