A million cycles in a day: Enabling high-throughput computing of lithium-ion battery degradation with physics-based models

解算器 电池(电) 吞吐量 Python(编程语言) 锂离子电池 超级计算机 管道(软件) 计算机科学 计算科学 可靠性工程 物理 工程类 并行计算 操作系统 功率(物理) 程序设计语言 无线 量子力学
作者
Ruihe Li,Simon O’Kane,Jianbo Huang,Monica Marinescu,Gregory J. Offer
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:598: 234184-234184 被引量:4
标识
DOI:10.1016/j.jpowsour.2024.234184
摘要

High-throughput computing (HTC) is a pivotal asset in many scientific fields, such as biology, material science and machine learning. Applying HTC to the complex physics-based degradation models of lithium-ion batteries enables efficient parameter identification and sensitivity analysis, which further leads to optimal battery designs and operating conditions. However, running physics-based degradation models comes with pitfalls, as solvers can crash or get stuck in infinite loops due to numerical errors. Also, how to pipeline HTC for degradation models has seldom been discussed. To fill these gaps, we have created ParaSweeper, a Python script tailored for HTC, designed to streamline parameter sweeping by running as many ageing simulations as computational resources allow, each with different parameters. We have demonstrated the capability of ParaSweeper based on the open-source platform PyBaMM, and the approach can also apply to other numerical models which solve partial differential equations. ParaSweeper not only manages common solver errors, but also integrates various methods to accelerate the simulation. Using a high-performance computing platform, ParaSweeper can run millions of charge/discharge cycles within one day. ParaSweeper stands to benefit both academic researchers, through expedited model exploration, and industry professionals, by enabling rapid lifetime design, ultimately contributing to the prolonged lifetime of batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
许子健发布了新的文献求助10
2秒前
3秒前
fanpengzhen发布了新的文献求助10
3秒前
yaowei完成签到,获得积分10
4秒前
铅笔995完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
爆米花应助徐昊雯采纳,获得10
5秒前
5秒前
123完成签到 ,获得积分10
6秒前
可靠远山完成签到 ,获得积分10
6秒前
6秒前
太阳完成签到,获得积分10
6秒前
evergarden发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
TNT应助liyi采纳,获得10
7秒前
fyfly发布了新的文献求助10
8秒前
8秒前
8秒前
典雅的俊驰应助xun采纳,获得30
8秒前
开放的柚子完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
可靠远山关注了科研通微信公众号
10秒前
10秒前
HopeStar完成签到,获得积分10
10秒前
11秒前
失眠的霸完成签到,获得积分10
12秒前
RHLVE应助戚薇采纳,获得20
12秒前
12秒前
wjx发布了新的文献求助10
12秒前
shuangcheng发布了新的文献求助10
12秒前
charm12发布了新的文献求助10
12秒前
研友_VZG7GZ应助fyfly采纳,获得10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646