A Novel Particle Swarm Optimization-Based Clustering and Routing Protocol for Wireless Sensor Networks

计算机科学 无线传感器网络 粒子群优化 聚类分析 路由协议 计算机网络 局部最优 能源消耗 数学优化 趋同(经济学) 布线(电子设计自动化) 算法 人工智能 数学 工程类 经济增长 电气工程 经济
作者
Hu Huangshui,Fan Xinji,Chuhang Wang,Ke Liu,Yuxin Guo
出处
期刊:Wireless Personal Communications [Springer Science+Business Media]
卷期号:133 (4): 2175-2202
标识
DOI:10.1007/s11277-024-10860-7
摘要

Extending the network lifetime as long as possible is one of the critical issues for wireless sensor networks (WSNs), which is usually resolved by using clustering and routing protocols. The clustering and routing processes are considered as an NP-hard problem popularly solved by swarm intelligence optimization algorithm. In this paper, a novel particle swarm optimization-based clustering and routing protocol called NPSOP is proposed to maximize the network lifetime considering not only energy efficiency but also energy and load balance. In NPSOP, the particle swarm optimization (PSO) technique is used to select the cluster heads (CHs) and find the routing paths for each CH by encoding them into a single particle simultaneously. Moreover, the components of a particle is constrained by parameters residual energy, centrality, distance to the BS so as to improve the convergence speed. In addition, the fitness function considering network energy consumption and load balancing is derived to evaluate the quality of particles. And an adaptive inertial weight is used to update the status of each particle in order to escape from trapping into local optima. Iteratively, the global optimal solution can be reached in the end. The performance of NPSOP is evaluated by extensive experiments compared with existing approaches in terms of energy consumption, throughput, network lifetime, standard deviation of residual energy and load. According to the results, especially, the network lifetime of NPSOP has improved by 29.94%, 24.16%, and 13.67% as compared to PSO-EEC, LDIWPSO and OFCA, respectively. Moreover, compared to PSOEEC, LDIWPSO, and OFCA, the network energy consumption has decreased by 24.08%, 19.16%, and 10.95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彳亍1117应助yxy采纳,获得20
刚刚
刚刚
ls沈小天发布了新的文献求助30
刚刚
1秒前
Mark发布了新的文献求助10
1秒前
羽翮完成签到 ,获得积分10
1秒前
义气完成签到 ,获得积分10
2秒前
善学以致用应助学术熊采纳,获得10
2秒前
充电宝应助dara997采纳,获得10
3秒前
3秒前
宋祥廷完成签到,获得积分10
4秒前
旺王雪饼完成签到 ,获得积分10
5秒前
junsizzz发布了新的文献求助10
5秒前
6秒前
wu8577应助Liu采纳,获得10
6秒前
白泽阳完成签到,获得积分10
6秒前
lelele发布了新的文献求助10
6秒前
7秒前
Ava应助Jodie采纳,获得10
7秒前
风清扬应助大媛媛采纳,获得10
7秒前
7秒前
7秒前
千俞完成签到 ,获得积分10
8秒前
搜集达人应助大bulingbulin采纳,获得10
8秒前
路过蜻蜓完成签到,获得积分10
9秒前
万能图书馆应助Pinkie采纳,获得10
9秒前
黎尘完成签到,获得积分10
10秒前
白泽阳发布了新的文献求助10
10秒前
木木发布了新的文献求助10
11秒前
LU发布了新的文献求助10
12秒前
酷波er应助junsizzz采纳,获得10
12秒前
初识发布了新的文献求助10
13秒前
大能猫发布了新的文献求助10
14秒前
14秒前
潘Pdm完成签到,获得积分10
14秒前
无花果应助摔跤的猫采纳,获得10
16秒前
17秒前
细胞疗法搬砖工完成签到,获得积分10
17秒前
五月風止发布了新的文献求助10
18秒前
李健应助开朗的柜子采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963