A Novel Particle Swarm Optimization-Based Clustering and Routing Protocol for Wireless Sensor Networks

计算机科学 无线传感器网络 粒子群优化 聚类分析 路由协议 计算机网络 局部最优 能源消耗 数学优化 趋同(经济学) 布线(电子设计自动化) 算法 人工智能 数学 工程类 经济增长 电气工程 经济
作者
Hu Huangshui,Fan Xinji,Chuhang Wang,Ke Liu,Yuxin Guo
出处
期刊:Wireless Personal Communications [Springer Nature]
卷期号:133 (4): 2175-2202
标识
DOI:10.1007/s11277-024-10860-7
摘要

Extending the network lifetime as long as possible is one of the critical issues for wireless sensor networks (WSNs), which is usually resolved by using clustering and routing protocols. The clustering and routing processes are considered as an NP-hard problem popularly solved by swarm intelligence optimization algorithm. In this paper, a novel particle swarm optimization-based clustering and routing protocol called NPSOP is proposed to maximize the network lifetime considering not only energy efficiency but also energy and load balance. In NPSOP, the particle swarm optimization (PSO) technique is used to select the cluster heads (CHs) and find the routing paths for each CH by encoding them into a single particle simultaneously. Moreover, the components of a particle is constrained by parameters residual energy, centrality, distance to the BS so as to improve the convergence speed. In addition, the fitness function considering network energy consumption and load balancing is derived to evaluate the quality of particles. And an adaptive inertial weight is used to update the status of each particle in order to escape from trapping into local optima. Iteratively, the global optimal solution can be reached in the end. The performance of NPSOP is evaluated by extensive experiments compared with existing approaches in terms of energy consumption, throughput, network lifetime, standard deviation of residual energy and load. According to the results, especially, the network lifetime of NPSOP has improved by 29.94%, 24.16%, and 13.67% as compared to PSO-EEC, LDIWPSO and OFCA, respectively. Moreover, compared to PSOEEC, LDIWPSO, and OFCA, the network energy consumption has decreased by 24.08%, 19.16%, and 10.95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shashali发布了新的文献求助30
1秒前
馒头发布了新的文献求助50
1秒前
粥粥完成签到,获得积分10
1秒前
xxdd发布了新的文献求助10
1秒前
2秒前
文木夕发布了新的文献求助10
2秒前
3秒前
共享精神应助灵巧的飞雪采纳,获得20
3秒前
今后应助lize5493采纳,获得10
3秒前
stuffmatter发布了新的文献求助20
4秒前
4秒前
5秒前
yurourou完成签到 ,获得积分10
6秒前
roclie发布了新的文献求助10
7秒前
7秒前
7秒前
不羁的风完成签到,获得积分10
7秒前
hanqing完成签到,获得积分10
7秒前
深情安青应助欧小仙采纳,获得10
8秒前
英姑应助dreamon采纳,获得10
8秒前
8秒前
852应助欧小仙采纳,获得10
8秒前
Hello应助欧小仙采纳,获得10
8秒前
Ava应助辛勤的乌采纳,获得10
9秒前
10秒前
热心市民小红花应助雨桐采纳,获得10
10秒前
10秒前
不羁的风发布了新的文献求助10
11秒前
弄香发布了新的文献求助10
12秒前
12秒前
充电宝应助1234采纳,获得10
13秒前
YZJing完成签到,获得积分10
13秒前
13秒前
八块腹肌发布了新的文献求助10
13秒前
Rosemary完成签到,获得积分10
13秒前
白rain发布了新的文献求助20
14秒前
vivianzzz发布了新的文献求助20
14秒前
krkr发布了新的文献求助10
15秒前
17秒前
ZXj123发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3106352
求助须知:如何正确求助?哪些是违规求助? 2757369
关于积分的说明 7644699
捐赠科研通 2411634
什么是DOI,文献DOI怎么找? 1279512
科研通“疑难数据库(出版商)”最低求助积分说明 617805
版权声明 599271