癌变
生物
癌症研究
基因敲除
细胞生长
细胞生物学
基因
生物化学
作者
Li Zhang,Kun Jiao,Yun Liu,Guiqin Xu,Zhaojuan Yang,Lvzhu Xiang,Zehong Chen,Chen Xu,You Zuo,Zhibai Wu,Ningqian Zheng,Xiaoren Zhang,Qiang Xia,Yongzhong Liu
标识
DOI:10.1097/hep.0000000000000711
摘要
Background and Aims: Liver tumorigenesis encompasses oncogenic activation and self-adaptation of various biological processes in premalignant hepatocytes to circumvent the pressure of cellular stress and host immune control. Ubiquitin regulatory X domain-containing proteins (UBXNs) participate in the regulation of certain signaling pathways. However, whether UBXN proteins function in the development of liver cancer remains unclear. Approach and Results: Here, we demonstrated that UBXN9 (Alveolar Soft Part Sarcoma Chromosomal Region Candidate Gene 1 Protein/Alveolar Soft Part Sarcoma Locus) expression was decreased in autochthonous oncogene-induced mouse liver tumors and ~47.7% of human HCCs, and associated with poor prognosis in patients with HCC. UBXN9 attenuated liver tumorigenesis induced by different oncogenic factors and tumor growth of transplanted liver tumor cells in immuno-competent mice. Mechanistically, UBXN9 significantly inhibited the function of the RNA exosome, resulting in increased expression of RLR-stimulatory RNAs and activation of the retinoic acid-inducible gene-I-IFN-Ι signaling in tumor cells, and hence potentiated T cell recruitment and immune control of tumor growth. Abrogation of the CD8 + T cell response or inhibition of tumor cell retinoic acid-inducible gene-I signaling efficiently counteracted the UBXN9-mediated suppression of liver tumor growth. Conclusions: Our results reveal a modality in which UBXN9 promotes the stimulatory RNA-induced retinoic acid-inducible gene-I-interferon signaling that induces anti-tumor T cell response in liver tumorigenesis. Targeted manipulation of the UBXN9-RNA exosome circuit may have the potential to reinstate the immune control of liver tumor growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI