Interruption-Aware Cooperative Perception for V2X Communication-Aided Autonomous Driving

感知 计算机科学 心理学 神经科学
作者
Shunli Ren,Zixing Lei,Zi Wang,Mehrdad Dianati,Yafei Wang,Siheng Chen,Wenjun Zhang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 4698-4714 被引量:9
标识
DOI:10.1109/tiv.2024.3371974
摘要

Cooperative perception can significantly improve the perception performance of autonomous vehicles beyond the limited perception ability of individual vehicles by exchanging information with neighbor agents through V2X communication. However, most existing work assume ideal communication among agents, ignoring the significant and common interruption issues caused by imperfect V2X communication, where cooperation agents can not receive cooperative messages successfully and thus fail to achieve cooperative perception, leading to safety risks. To fully reap the benefits of cooperative perception in practice, we propose V2X communication INterruption-aware COoperative Perception (V2X-INCOP), a cooperative perception system robust to communication interruption for V2X communication-aided autonomous driving, which leverages historical cooperation information to recover missing information due to the interruptions and alleviate the impact of the interruption issue. To achieve comprehensive recovery, we design a communication-adaptive multi-scale spatial-temporal prediction model to extract multi-scale spatial-temporal features based on V2X communication conditions and capture the most significant information for the prediction of the missing information. To further improve recovery performance, we adopt a knowledge distillation framework to give explicit and direct supervision to the prediction model and a curriculum learning strategy to stabilize the training of the model. Experiments on three public cooperative perception datasets demonstrate that the proposed method is effective in alleviating the impacts of communication interruption on cooperative perception. V2X-INCOP outperforms state-of-the-art cooperative perception methods and has a cooperative perception gain up to 14.06%, 13.9%, and 12.07% over individual perception on average of different packet drop rates on OPV2V, V2X-Sim, and Dair-V2X datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
亓大大发布了新的文献求助10
3秒前
丘比特应助温暖寻雪采纳,获得10
3秒前
3秒前
东尧完成签到 ,获得积分10
4秒前
郭mm发布了新的文献求助10
4秒前
留白守墨完成签到,获得积分20
4秒前
pangpang应助barrycream采纳,获得10
4秒前
ding应助胡萝卜须采纳,获得30
5秒前
昌子骞完成签到,获得积分10
6秒前
6秒前
所所应助无情的黑猫采纳,获得10
7秒前
sschen完成签到,获得积分10
7秒前
LT完成签到,获得积分10
9秒前
YYY完成签到,获得积分10
9秒前
10秒前
10秒前
向光关注了科研通微信公众号
10秒前
10秒前
会咩的嘉人璐完成签到,获得积分10
10秒前
11秒前
11秒前
亓大大完成签到,获得积分10
13秒前
一麯肝肠斷完成签到,获得积分10
13秒前
14秒前
15秒前
常艳艳发布了新的文献求助10
16秒前
张于小丸子完成签到,获得积分10
16秒前
17秒前
研友_8WzxMZ完成签到,获得积分20
17秒前
keyanbaicai发布了新的文献求助10
17秒前
Aaron完成签到,获得积分10
17秒前
Anemone发布了新的文献求助10
19秒前
20秒前
阿西吧完成签到 ,获得积分10
20秒前
22秒前
23秒前
23秒前
领导范儿应助稳重的秋天采纳,获得10
24秒前
杋困了完成签到 ,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217