Interruption-Aware Cooperative Perception for V2X Communication-Aided Autonomous Driving

感知 计算机科学 心理学 神经科学
作者
Shunli Ren,Zixing Lei,Zi Wang,Mehrdad Dianati,Yafei Wang,Siheng Chen,Wenjun Zhang
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 4698-4714 被引量:13
标识
DOI:10.1109/tiv.2024.3371974
摘要

Cooperative perception can significantly improve the perception performance of autonomous vehicles beyond the limited perception ability of individual vehicles by exchanging information with neighbor agents through V2X communication. However, most existing work assume ideal communication among agents, ignoring the significant and common interruption issues caused by imperfect V2X communication, where cooperation agents can not receive cooperative messages successfully and thus fail to achieve cooperative perception, leading to safety risks. To fully reap the benefits of cooperative perception in practice, we propose V2X communication INterruption-aware COoperative Perception (V2X-INCOP), a cooperative perception system robust to communication interruption for V2X communication-aided autonomous driving, which leverages historical cooperation information to recover missing information due to the interruptions and alleviate the impact of the interruption issue. To achieve comprehensive recovery, we design a communication-adaptive multi-scale spatial-temporal prediction model to extract multi-scale spatial-temporal features based on V2X communication conditions and capture the most significant information for the prediction of the missing information. To further improve recovery performance, we adopt a knowledge distillation framework to give explicit and direct supervision to the prediction model and a curriculum learning strategy to stabilize the training of the model. Experiments on three public cooperative perception datasets demonstrate that the proposed method is effective in alleviating the impacts of communication interruption on cooperative perception. V2X-INCOP outperforms state-of-the-art cooperative perception methods and has a cooperative perception gain up to 14.06%, 13.9%, and 12.07% over individual perception on average of different packet drop rates on OPV2V, V2X-Sim, and Dair-V2X datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
小黑鼠发布了新的文献求助10
1秒前
2秒前
顾矜应助起不出名字3采纳,获得10
3秒前
vsbsjj完成签到,获得积分10
4秒前
6秒前
妖精很通完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
刘碰蛋完成签到,获得积分10
8秒前
322628发布了新的文献求助10
8秒前
8秒前
8秒前
专注的问寒应助明亮惜天采纳,获得50
8秒前
9秒前
AN应助Feng采纳,获得30
10秒前
12秒前
科目三应助妖精很通采纳,获得10
12秒前
雾非雾完成签到,获得积分10
12秒前
chenyuns发布了新的文献求助10
14秒前
包容的雨泽发布了新的文献求助100
14秒前
小豆包发布了新的文献求助30
15秒前
拼搏的帽子完成签到 ,获得积分10
15秒前
钟梓袄发布了新的文献求助10
16秒前
17秒前
充电宝应助小罗不吃芋头采纳,获得10
21秒前
等天晴的微波饺子完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
Akim应助chenyuns采纳,获得10
23秒前
小豆包完成签到,获得积分10
23秒前
轨迹应助hehexi采纳,获得20
23秒前
xixi很困完成签到,获得积分10
24秒前
25秒前
wangzheng发布了新的文献求助10
25秒前
25秒前
27秒前
28秒前
28秒前
我呜呜呜呜完成签到,获得积分10
28秒前
小黑鼠完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741