水解物
化学
结晶度
核化学
残留物(化学)
糖
纤维素
热稳定性
溶剂
还原糖
食品科学
有机化学
水解
结晶学
作者
Zhe Liu,Yingying Wang,Shengnan Guo,Jie Liu,Ping Zhu
标识
DOI:10.1016/j.ijbiomac.2023.128939
摘要
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
科研通智能强力驱动
Strongly Powered by AbleSci AI