Optimization of a Cluster-Based Energy Management System using Deep Reinforcement Learning without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading

消费者 强化学习 计算机科学 点对点 星团(航天器) 能源管理 能量(信号处理) 分布式计算 计算机网络 人工智能 工程类 可再生能源 统计 数学 电气工程
作者
Mete Yavuz,Ömer Cihan Kıvanç
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/access.2024.3370922
摘要

The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective.In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G).Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies.In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers.The proposed EMS is applied to a small-scale cluster-based environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s.Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process.Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR.Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助胡123456789采纳,获得10
刚刚
番茄鸡蛋牛肉fan完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助misong采纳,获得30
2秒前
啊呜发布了新的文献求助10
3秒前
3秒前
3秒前
小银应助张宝采纳,获得10
4秒前
5秒前
昭明发布了新的文献求助10
5秒前
5秒前
orixero应助昏睡的傲珊采纳,获得10
6秒前
喜马拉雅关注了科研通微信公众号
6秒前
充电宝应助Firefly采纳,获得10
6秒前
薇w完成签到,获得积分10
7秒前
严zz发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
Akim应助xiaoxiao采纳,获得10
7秒前
8秒前
脑洞疼应助王红坤采纳,获得10
9秒前
9秒前
沐雪发布了新的文献求助10
11秒前
钦点小黑完成签到,获得积分10
11秒前
Ava应助怡然的念柏采纳,获得10
11秒前
辣椒完成签到 ,获得积分10
11秒前
12秒前
科研通AI6应助liuqingyun采纳,获得10
12秒前
KSDalton完成签到,获得积分10
13秒前
zhangjianan发布了新的文献求助10
13秒前
啊呜完成签到,获得积分10
13秒前
13秒前
13秒前
泰山球迷发布了新的文献求助10
14秒前
伶俐乌完成签到,获得积分10
14秒前
一月完成签到,获得积分20
14秒前
YF是杨芳完成签到 ,获得积分10
16秒前
17秒前
17秒前
科目三应助yu采纳,获得10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687