亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization of a Cluster-Based Energy Management System using Deep Reinforcement Learning without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading

消费者 强化学习 计算机科学 点对点 星团(航天器) 能源管理 能量(信号处理) 分布式计算 计算机网络 人工智能 工程类 可再生能源 数学 统计 电气工程
作者
Mete Yavuz,Ömer Cihan Kıvanç
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/access.2024.3370922
摘要

The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective.In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G).Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies.In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers.The proposed EMS is applied to a small-scale cluster-based environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s.Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process.Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR.Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
shhoing应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
gexzygg应助科研通管家采纳,获得10
18秒前
shhoing应助科研通管家采纳,获得10
18秒前
李健应助总是很简单采纳,获得10
37秒前
草木完成签到 ,获得积分20
40秒前
asd1576562308完成签到 ,获得积分10
47秒前
BowieHuang应助达不溜搽采纳,获得10
1分钟前
绿野仙踪完成签到 ,获得积分10
1分钟前
1分钟前
弃笔从文发布了新的文献求助10
1分钟前
弃笔从文完成签到,获得积分20
1分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
天天快乐应助调皮千兰采纳,获得10
2分钟前
何为完成签到 ,获得积分0
2分钟前
2分钟前
调皮千兰发布了新的文献求助10
2分钟前
2分钟前
jinghong完成签到 ,获得积分10
3分钟前
彭于晏应助爱蹦跶的废物采纳,获得10
3分钟前
sunfield2014发布了新的文献求助10
3分钟前
3分钟前
BowieHuang应助调皮千兰采纳,获得10
3分钟前
3分钟前
完美世界应助雨晨采纳,获得10
3分钟前
3分钟前
Owen应助季刘杰采纳,获得10
3分钟前
3分钟前
季刘杰发布了新的文献求助10
3分钟前
ding应助调皮千兰采纳,获得10
4分钟前
小马甲应助渡己。采纳,获得10
4分钟前
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561453
求助须知:如何正确求助?哪些是违规求助? 4646560
关于积分的说明 14678633
捐赠科研通 4587843
什么是DOI,文献DOI怎么找? 2517229
邀请新用户注册赠送积分活动 1490505
关于科研通互助平台的介绍 1461454