Optimization of a Cluster-Based Energy Management System using Deep Reinforcement Learning without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading

消费者 强化学习 计算机科学 点对点 星团(航天器) 能源管理 能量(信号处理) 分布式计算 计算机网络 人工智能 工程类 可再生能源 统计 数学 电气工程
作者
Mete Yavuz,Ömer Cihan Kıvanç
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/access.2024.3370922
摘要

The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective.In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G).Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies.In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers.The proposed EMS is applied to a small-scale cluster-based environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s.Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process.Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR.Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小油条完成签到,获得积分10
1秒前
马保国123发布了新的文献求助10
1秒前
wanci应助晨曦采纳,获得10
1秒前
潇洒的翠丝完成签到,获得积分20
1秒前
Frank完成签到,获得积分10
1秒前
子车代芙完成签到,获得积分10
1秒前
陌路发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助10
3秒前
灵巧荆发布了新的文献求助10
3秒前
无私映秋发布了新的文献求助10
3秒前
思源应助zhui采纳,获得10
3秒前
小黄应助清欢采纳,获得10
3秒前
蕾子完成签到,获得积分20
3秒前
敬老院N号应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
喜悦中道应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
健壮惋清完成签到 ,获得积分10
5秒前
桐桐应助佳佳采纳,获得10
5秒前
科研通AI5应助润润轩轩采纳,获得10
5秒前
5秒前
Orange应助w.h采纳,获得10
6秒前
稳重的安萱完成签到,获得积分10
6秒前
7秒前
Owen应助马静雨采纳,获得10
8秒前
8秒前
吴岳发布了新的文献求助10
9秒前
XHT完成签到,获得积分10
9秒前
Martin完成签到 ,获得积分10
10秒前
花花完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794