Optimization of a Cluster-Based Energy Management System using Deep Reinforcement Learning without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading

消费者 强化学习 计算机科学 点对点 星团(航天器) 能源管理 能量(信号处理) 分布式计算 计算机网络 人工智能 工程类 可再生能源 数学 统计 电气工程
作者
Mete Yavuz,Ömer Cihan Kıvanç
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/access.2024.3370922
摘要

The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective.In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G).Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies.In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers.The proposed EMS is applied to a small-scale cluster-based environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s.Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process.Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR.Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY发布了新的文献求助10
1秒前
窗边的小白完成签到,获得积分20
1秒前
QP34完成签到 ,获得积分10
1秒前
古木发布了新的文献求助10
1秒前
lxxy123完成签到 ,获得积分10
1秒前
2秒前
Lucas应助望舒采纳,获得30
2秒前
2秒前
2秒前
MCst完成签到,获得积分10
2秒前
3秒前
仁爱柠檬发布了新的文献求助10
3秒前
打打应助安详流沙采纳,获得10
3秒前
小鱼儿发布了新的文献求助10
3秒前
suiyi发布了新的文献求助30
3秒前
aka完成签到,获得积分10
4秒前
打打应助zzz采纳,获得10
4秒前
Lucas应助yangshichen采纳,获得10
5秒前
6秒前
14发布了新的文献求助10
7秒前
7秒前
7秒前
羊大侠发布了新的文献求助10
7秒前
上官若男应助jack采纳,获得10
8秒前
SciGPT应助FAN采纳,获得10
8秒前
8秒前
9秒前
林朝阳完成签到,获得积分10
9秒前
jagger发布了新的文献求助10
9秒前
yltstt完成签到,获得积分10
9秒前
9秒前
所所应助烂泥采纳,获得30
10秒前
10秒前
香蕉觅云应助张张采纳,获得10
10秒前
姚晨阳发布了新的文献求助10
11秒前
11秒前
14完成签到,获得积分10
13秒前
专注白昼应助gxmu6322采纳,获得10
13秒前
13秒前
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206252
求助须知:如何正确求助?哪些是违规求助? 4384715
关于积分的说明 13654415
捐赠科研通 4243009
什么是DOI,文献DOI怎么找? 2327824
邀请新用户注册赠送积分活动 1325588
关于科研通互助平台的介绍 1277676