Optimization of a Cluster-Based Energy Management System using Deep Reinforcement Learning without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading

消费者 强化学习 计算机科学 点对点 星团(航天器) 能源管理 能量(信号处理) 分布式计算 计算机网络 人工智能 工程类 可再生能源 数学 统计 电气工程
作者
Mete Yavuz,Ömer Cihan Kıvanç
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/access.2024.3370922
摘要

The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective.In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G).Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies.In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers.The proposed EMS is applied to a small-scale cluster-based environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s.Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process.Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR.Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心沂完成签到,获得积分10
1秒前
缄默完成签到,获得积分20
1秒前
1秒前
PG完成签到 ,获得积分10
1秒前
无极微光应助Stone采纳,获得20
1秒前
仙女发布了新的文献求助10
1秒前
joe_liu发布了新的文献求助10
2秒前
2秒前
2秒前
Criminology34应助淡定若采纳,获得10
3秒前
和谐续完成签到 ,获得积分10
3秒前
momo完成签到,获得积分10
3秒前
feng完成签到,获得积分10
3秒前
zhongying完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
紧张的书文完成签到 ,获得积分10
4秒前
完美蘑菇完成签到 ,获得积分10
4秒前
后知后觉完成签到,获得积分10
5秒前
苹果南烟完成签到,获得积分10
5秒前
土豪的紫荷完成签到 ,获得积分10
5秒前
科研搬运工完成签到,获得积分10
5秒前
向雅完成签到,获得积分10
5秒前
锡嘻发布了新的文献求助10
5秒前
Youdge完成签到,获得积分10
5秒前
6秒前
儒雅的翠琴完成签到,获得积分10
6秒前
鹿多多完成签到,获得积分10
6秒前
7秒前
小飞爱科研完成签到,获得积分10
7秒前
可爱的小丸子完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
满意鲂发布了新的文献求助30
8秒前
昀松应助自然的翠桃采纳,获得10
8秒前
有人应助风里等你采纳,获得10
8秒前
阿刁完成签到,获得积分10
8秒前
zmm完成签到 ,获得积分10
9秒前
Cedric完成签到,获得积分10
9秒前
addi111完成签到,获得积分10
10秒前
7Steven7完成签到 ,获得积分10
10秒前
行悟完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957