清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimization of a Cluster-Based Energy Management System using Deep Reinforcement Learning without Affecting Prosumer Comfort: V2X Technologies and Peer-to-Peer Energy Trading

消费者 强化学习 计算机科学 点对点 星团(航天器) 能源管理 能量(信号处理) 分布式计算 计算机网络 人工智能 工程类 可再生能源 数学 统计 电气工程
作者
Mete Yavuz,Ömer Cihan Kıvanç
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/access.2024.3370922
摘要

The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer (P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have become more accessible and cost-effective.In addition to the P2P energy trading, prosumers benefit from the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies, such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G).Optimization of an Energy Management System (EMS) is required to allocate the required energy efficiently within the cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple EVs with V2X technologies.In this paper, Deep Reinforcement Learning (DRL) based EMS optimization method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading without affecting the comfort of prosumers.The proposed EMS is applied to a small-scale cluster-based environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs and increase the Self-Sufficiency Ratio (SSR)s.Multi Double Deep Q-Network (DDQN) agents based DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP) to optimize the decision-making process.Numerical results show that the proposed EMS reduces the overall energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR.Additionally, numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN) Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with multiple uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的丹翠完成签到,获得积分10
2秒前
3秒前
9秒前
28秒前
cclyfan完成签到,获得积分10
31秒前
35秒前
陶醉巧凡完成签到,获得积分10
1分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
iNk应助lawang采纳,获得10
2分钟前
科研通AI2S应助lawang采纳,获得10
2分钟前
Akim应助lawang采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
饺子猫完成签到,获得积分10
3分钟前
3分钟前
lawang完成签到,获得积分10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
4分钟前
4分钟前
朱文韬发布了新的文献求助10
4分钟前
朱文韬完成签到,获得积分10
4分钟前
平淡卿完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
li发布了新的文献求助10
5分钟前
kasumi完成签到 ,获得积分20
5分钟前
li完成签到,获得积分10
5分钟前
krajicek完成签到,获得积分10
6分钟前
6分钟前
7分钟前
bkagyin应助当里个当采纳,获得10
7分钟前
jinger完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117