Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China

计算机科学 流行病模型 接种疫苗 人工智能 分段 机器学习 医学 数学 人口 数学分析 环境卫生 免疫学
作者
Seyed Ali Rakhshan,M. Zaj,F.H. Ghane,Mahdi Soltani Nejad
出处
期刊:Physical review [American Physical Society]
卷期号:109 (1)
标识
DOI:10.1103/physreve.109.014212
摘要

In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease dynamics and human conduct. Various factors can impact the control of an epidemic, including social interventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical recurrent dynamic models with four different learning methods. The model is composed of two approaches: The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected, and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February 2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques, compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the behavior of epidemics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷炫的之柔完成签到,获得积分10
1秒前
xunxunmimi发布了新的文献求助10
3秒前
4秒前
乂贰ZERO叁完成签到 ,获得积分10
4秒前
思源应助酷炫的之柔采纳,获得10
5秒前
xiaohu发布了新的文献求助10
5秒前
Ant应助小李采纳,获得30
6秒前
7秒前
7秒前
苹果初阳发布了新的文献求助10
10秒前
此间少年完成签到,获得积分10
10秒前
12秒前
Hairee发布了新的文献求助10
12秒前
思源应助baonali采纳,获得10
13秒前
WXR完成签到,获得积分10
15秒前
蓝胖胖蓝完成签到,获得积分10
16秒前
蜘蛛道理完成签到 ,获得积分10
16秒前
LZM完成签到,获得积分10
17秒前
WuLunbi发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
21秒前
我还以为春天到了完成签到 ,获得积分10
21秒前
亲爱的融完成签到,获得积分10
22秒前
SherlockHe发布了新的文献求助10
23秒前
momo发布了新的文献求助10
24秒前
米饭多加水完成签到 ,获得积分10
26秒前
潘善若发布了新的文献求助10
27秒前
Jasper应助anna采纳,获得10
31秒前
zzr元亨利贞完成签到,获得积分10
33秒前
riccixuu完成签到 ,获得积分10
34秒前
潘善若发布了新的文献求助10
35秒前
JK完成签到,获得积分20
36秒前
37秒前
37秒前
37秒前
苹果初阳完成签到,获得积分10
37秒前
SherlockHe完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136