Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China

计算机科学 流行病模型 接种疫苗 人工智能 分段 机器学习 医学 数学 人口 数学分析 环境卫生 免疫学
作者
Seyed Ali Rakhshan,M. Zaj,F.H. Ghane,Mahdi Soltani Nejad
出处
期刊:Physical review [American Physical Society]
卷期号:109 (1)
标识
DOI:10.1103/physreve.109.014212
摘要

In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease dynamics and human conduct. Various factors can impact the control of an epidemic, including social interventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical recurrent dynamic models with four different learning methods. The model is composed of two approaches: The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected, and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February 2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques, compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the behavior of epidemics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜芾完成签到,获得积分10
刚刚
jiang发布了新的文献求助10
1秒前
汉堡包应助悲伤汉堡包采纳,获得10
2秒前
2秒前
3秒前
3秒前
5秒前
fanlin发布了新的文献求助10
5秒前
5秒前
memes完成签到,获得积分10
5秒前
liuchang完成签到 ,获得积分10
6秒前
油油完成签到 ,获得积分10
6秒前
David驳回了wanci应助
6秒前
悠悠发布了新的文献求助10
6秒前
萝卜完成签到,获得积分10
6秒前
7秒前
CipherSage应助Lijunjie采纳,获得10
8秒前
阔达的寒松完成签到,获得积分10
8秒前
Efei发布了新的文献求助30
10秒前
平常幼萱完成签到,获得积分10
10秒前
希望天下0贩的0应助Saluzi采纳,获得10
10秒前
dddd发布了新的文献求助30
10秒前
可爱的函函应助竹子采纳,获得30
11秒前
隐形曼青应助纠结不纠结采纳,获得10
11秒前
今后应助耍酷的千愁采纳,获得10
12秒前
大湖玩家完成签到,获得积分10
12秒前
科研通AI6应助秋云山月采纳,获得10
13秒前
复杂数据线完成签到,获得积分10
13秒前
Hello应助小L采纳,获得10
13秒前
Hello应助111采纳,获得10
13秒前
ZZQ完成签到 ,获得积分20
14秒前
14秒前
Zyl完成签到 ,获得积分10
14秒前
14秒前
17秒前
罗霄山完成签到,获得积分10
18秒前
wanci应助清脆的书桃采纳,获得10
18秒前
陈艺鹏完成签到,获得积分10
19秒前
Lijunjie完成签到,获得积分10
19秒前
IBM完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343