Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China

计算机科学 流行病模型 接种疫苗 人工智能 分段 机器学习 医学 数学 人口 数学分析 环境卫生 免疫学
作者
Seyed Ali Rakhshan,M. Zaj,F.H. Ghane,Mahdi Soltani Nejad
出处
期刊:Physical review [American Physical Society]
卷期号:109 (1)
标识
DOI:10.1103/physreve.109.014212
摘要

In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease dynamics and human conduct. Various factors can impact the control of an epidemic, including social interventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical recurrent dynamic models with four different learning methods. The model is composed of two approaches: The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected, and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February 2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques, compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the behavior of epidemics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
diuwaitao应助heyudian采纳,获得10
1秒前
ybwei2008_163发布了新的文献求助10
1秒前
梅狸猫发布了新的文献求助10
1秒前
2秒前
2秒前
jessicazhong完成签到,获得积分10
3秒前
WEIMING完成签到,获得积分10
4秒前
浮游应助tt采纳,获得10
4秒前
研友_8oBxrZ完成签到,获得积分10
4秒前
高兴的玉米完成签到 ,获得积分10
4秒前
4秒前
4秒前
陶醉的又夏完成签到 ,获得积分10
6秒前
8秒前
木木彡发布了新的文献求助10
8秒前
光亮映真发布了新的文献求助10
10秒前
Yuki完成签到 ,获得积分10
10秒前
12秒前
14秒前
15秒前
Joseph_sss完成签到 ,获得积分10
15秒前
辰星曦完成签到,获得积分10
15秒前
小丹er完成签到,获得积分10
16秒前
文静向南发布了新的文献求助10
19秒前
zy完成签到,获得积分10
19秒前
NexusExplorer应助ybwei2008_163采纳,获得10
19秒前
研友_VZG7GZ应助solar@2030采纳,获得10
20秒前
penny完成签到,获得积分10
21秒前
YLX发布了新的文献求助10
21秒前
TEO完成签到 ,获得积分10
22秒前
852应助Qzy采纳,获得10
22秒前
22秒前
七一桉完成签到,获得积分10
22秒前
迷路的梦露完成签到,获得积分10
24秒前
24秒前
tt完成签到,获得积分10
25秒前
Alvin完成签到,获得积分10
25秒前
Phuniabo完成签到,获得积分10
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547012
求助须知:如何正确求助?哪些是违规求助? 3978071
关于积分的说明 12318010
捐赠科研通 3646605
什么是DOI,文献DOI怎么找? 2008273
邀请新用户注册赠送积分活动 1043802
科研通“疑难数据库(出版商)”最低求助积分说明 932460