清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China

计算机科学 流行病模型 接种疫苗 人工智能 分段 机器学习 医学 数学 人口 数学分析 环境卫生 免疫学
作者
Seyed Ali Rakhshan,M. Zaj,F.H. Ghane,Mahdi Soltani Nejad
出处
期刊:Physical review [American Physical Society]
卷期号:109 (1)
标识
DOI:10.1103/physreve.109.014212
摘要

In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease dynamics and human conduct. Various factors can impact the control of an epidemic, including social interventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical recurrent dynamic models with four different learning methods. The model is composed of two approaches: The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected, and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February 2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques, compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the behavior of epidemics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
大医仁心完成签到 ,获得积分10
10秒前
NattyPoe应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
31秒前
45秒前
卓天宇完成签到,获得积分0
48秒前
量子星尘发布了新的文献求助50
51秒前
1分钟前
小李老博完成签到,获得积分10
1分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
2分钟前
魏猛完成签到,获得积分10
3分钟前
ilihe应助dd采纳,获得10
4分钟前
简单发布了新的文献求助20
4分钟前
dd完成签到,获得积分10
4分钟前
简单发布了新的文献求助20
5分钟前
开心每一天完成签到 ,获得积分10
5分钟前
无极微光应助简单采纳,获得20
5分钟前
6分钟前
Mio发布了新的文献求助10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
三日发布了新的文献求助10
6分钟前
范白容完成签到 ,获得积分0
6分钟前
栀鸢完成签到,获得积分20
7分钟前
tt完成签到,获得积分10
7分钟前
Dryang完成签到 ,获得积分10
7分钟前
7分钟前
煜琪完成签到 ,获得积分10
7分钟前
三日完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701