亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China

计算机科学 流行病模型 接种疫苗 人工智能 分段 机器学习 医学 数学 人口 数学分析 环境卫生 免疫学
作者
Seyed Ali Rakhshan,M. Zaj,F.H. Ghane,Mahdi Soltani Nejad
出处
期刊:Physical review [American Physical Society]
卷期号:109 (1)
标识
DOI:10.1103/physreve.109.014212
摘要

In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease dynamics and human conduct. Various factors can impact the control of an epidemic, including social interventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical recurrent dynamic models with four different learning methods. The model is composed of two approaches: The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected, and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February 2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques, compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the behavior of epidemics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RED发布了新的文献求助10
5秒前
18秒前
22秒前
二十九完成签到,获得积分10
22秒前
amengptsd完成签到,获得积分10
27秒前
32秒前
受伤纲完成签到 ,获得积分10
34秒前
36秒前
柠栀完成签到 ,获得积分10
36秒前
杜梦婷发布了新的文献求助10
37秒前
41秒前
45秒前
机灵毛豆完成签到 ,获得积分10
47秒前
50秒前
51秒前
青柠完成签到,获得积分10
51秒前
FashionBoy应助杜梦婷采纳,获得10
51秒前
科目三应助落花生采纳,获得10
52秒前
53秒前
53秒前
beiwei完成签到 ,获得积分10
54秒前
lhn发布了新的文献求助10
55秒前
SweetyTian发布了新的文献求助10
56秒前
洁净百川完成签到 ,获得积分10
56秒前
58秒前
cjy发布了新的文献求助10
1分钟前
Dream点壹完成签到,获得积分0
1分钟前
老实涑发布了新的文献求助10
1分钟前
英姑应助cjy采纳,获得10
1分钟前
1分钟前
1分钟前
落花生发布了新的文献求助10
1分钟前
1分钟前
1分钟前
完美的水杯完成签到 ,获得积分10
1分钟前
1分钟前
月见完成签到 ,获得积分10
1分钟前
脑洞疼应助OnlyHarbour采纳,获得10
1分钟前
铠甲勇士完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509257
求助须知:如何正确求助?哪些是违规求助? 4604224
关于积分的说明 14489437
捐赠科研通 4538934
什么是DOI,文献DOI怎么找? 2487224
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441882