Exploring the potential of learning methods and recurrent dynamic model with vaccination: A comparative case study of COVID-19 in Austria, Brazil, and China

计算机科学 流行病模型 接种疫苗 人工智能 分段 机器学习 医学 数学 人口 数学分析 环境卫生 免疫学
作者
Seyed Ali Rakhshan,M. Zaj,F.H. Ghane,Mahdi Soltani Nejad
出处
期刊:Physical review 卷期号:109 (1)
标识
DOI:10.1103/physreve.109.014212
摘要

In order to effectively manage infectious diseases, it is crucial to understand the interplay between disease dynamics and human conduct. Various factors can impact the control of an epidemic, including social interventions, adherence to health protocols, mask-wearing, and vaccination. This article presents the development of an innovative hybrid model, known as the Combined Dynamic-Learning Model, that integrates classical recurrent dynamic models with four different learning methods. The model is composed of two approaches: The first approach introduces a traditional dynamic model that focuses on analyzing the impact of vaccination on the occurrence of an epidemic, and the second approach employs various learning methods to forecast the potential outcomes of an epidemic. Furthermore, our numerical results offer an interesting comparison between the traditional approach and modern learning techniques. Our classic dynamic model is a compartmental model that aims to analyze and forecast the diffusion of epidemics. The model we propose has a recurrent structure with piecewise constant parameters and includes compartments for susceptible, exposed, vaccinated, infected, and recovered individuals. This model can accurately mirror the dynamics of infectious diseases, which enables us to evaluate the impact of restrictive measures on the spread of diseases. We conduct a comprehensive dynamic analysis of our model. Additionally, we suggest an optimal numerical design to determine the parameters of the system. Also, we use regression tree learning, bidirectional long short-term memory, gated recurrent unit, and a combined deep learning method for training and evaluation of an epidemic. In the final section of our paper, we apply these methods to recently published data on COVID-19 in Austria, Brazil, and China from 26 February 2021 to 4 August 2021, which is when vaccination efforts began. To evaluate the numerical results, we utilized various metrics such as RMSE and R-squared. Our findings suggest that the dynamic model is ideal for long-term analysis, data fitting, and identifying parameters that impact epidemics. However, it is not as effective as the supervised learning method for making long-term forecasts. On the other hand, supervised learning techniques, compared to dynamic models, are more effective for predicting the spread of diseases, but not for analyzing the behavior of epidemics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ray完成签到 ,获得积分10
刚刚
1秒前
2秒前
小小鱼完成签到,获得积分10
3秒前
4秒前
金阿垚在科研完成签到,获得积分10
4秒前
李小鑫吖完成签到,获得积分10
5秒前
5秒前
Yimi完成签到,获得积分10
6秒前
KKKKKkkk发布了新的文献求助10
6秒前
浩浩完成签到 ,获得积分10
6秒前
曼夭非夭完成签到,获得积分10
6秒前
zero_sky完成签到,获得积分10
6秒前
6秒前
6秒前
Feng5945发布了新的文献求助10
7秒前
7秒前
云雨完成签到 ,获得积分10
7秒前
8秒前
风趣小小完成签到,获得积分10
9秒前
醋包plz发布了新的文献求助30
10秒前
Tom完成签到,获得积分10
10秒前
张zhang完成签到 ,获得积分10
12秒前
13秒前
不安的白昼完成签到 ,获得积分10
13秒前
15秒前
sunnyqqz完成签到,获得积分10
17秒前
科研通AI2S应助YY采纳,获得10
17秒前
LXY8848完成签到 ,获得积分10
17秒前
小李完成签到,获得积分10
18秒前
完美世界应助KKKKKkkk采纳,获得10
18秒前
Dphile完成签到,获得积分20
19秒前
泡泡球完成签到,获得积分10
19秒前
xiao完成签到 ,获得积分10
19秒前
xiaohong完成签到 ,获得积分10
24秒前
FashionBoy应助fbpuf采纳,获得10
25秒前
Jasper应助zero_sky采纳,获得10
25秒前
单薄小鸽子完成签到,获得积分10
26秒前
26秒前
科研通AI2S应助七栀采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162560
求助须知:如何正确求助?哪些是违规求助? 2813457
关于积分的说明 7900425
捐赠科研通 2473012
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175