阳极
材料科学
锂(药物)
无定形固体
复合数
电极
化学工程
纳米颗粒
上部结构
离子
锂离子电池
体积膨胀
电池(电)
无定形碳
纳米技术
复合材料
化学
结晶学
有机化学
物理化学
内分泌学
海洋学
工程类
功率(物理)
量子力学
内科学
医学
物理
地质学
作者
Xiebo Hu,Ping Xu,Mingdong Liao,Xiuqing Lu,Guobo Shen,Chenghao Zhong,Mingyu Zhang,Qizhong Huang,Zhean Su
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2024-01-09
卷期号:7 (2): 774-784
被引量:6
标识
DOI:10.1021/acsaem.3c02879
摘要
Constructing a robust structure is crucial for addressing the inherent flaws of SiO-based anode materials, such as significant volume expansion and high ion and electron resistance. Therefore, in this article, we synthesized a SiO-based composite denoted as SiO–SiO2@C via a facile liquid-phase method. This composite possessed a sturdy three-dimensional structure and dual functionality. The superstructure was formed by the carbon-coated amorphous SiO2 nanoparticles surrounding the SiO particles, which endowed the structural stability of SiO–SiO2@C. It is worth noting that the SiO–SiO2@C composite manifested a high ICE of 75.7% and an impressive reversible capacity of 1061.0 mA h g–1 at 0.2 A g–1 after 100 cycles, with a 97% capacity retention compared to the second discharge. Furthermore, this electrode showed exceptional cycle performance of 430.5 mA h g–1 after 700 cycles at 2 A g–1 and rate performance with an average reversible capacity of 703.4 mA h g–1 at 3 A g–1. Overall, the prepared SiO–SiO2@C electrode material displayed a huge opportunity for lithium-ion battery anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI