Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm

算法 克里金 平均绝对百分比误差 高斯过程 计算机科学 机器学习 流量(数学) 高超音速 人工智能 高斯分布 人工神经网络 工程类 数学 物理 航空航天工程 几何学 量子力学
作者
Yuxin Yang,Youtao Xue,Wenwen Zhao,Shaobo Yao,Chengrui Li,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:9
标识
DOI:10.1063/5.0183291
摘要

Conducting large-scale numerical computations to obtain flow field during the hypersonic vehicle engineering design phase can be excessively costly. Although deep learning algorithms enable rapid flow field prediction with high-precision, they require a significant investment in training samples, contradicting the motivation of reducing the cost of acquiring flow field. The combination of feature extraction algorithms and regression algorithms can also achieve high-precision prediction of flow fields, which is more suitable to tackle three-dimensional flow prediction with a small dataset. In this study, we propose a reduced-order model (ROM) for the three-dimensional hypersonic vehicle flow prediction utilizing proper orthogonal decomposition to extract representative features and Gaussian process regression with improved automatic kernel construction (AKC-GPR) to perform a nonlinear mapping of physical features for prediction. The selection of variables is based on sensitivity analysis and modal assurance criterion. The underlying relationship is unveiled between flow field variables and inflow conditions. The ROM exhibits high predictive accuracy, with mean absolute percentage error (MAPE) of total field less than 3.5%, when varying altitudes and Mach numbers. During angle of attack variations, the ROM only effectively reconstructs flow distribution by interpolation with a MAPE of 7.02%. The excellent small-sample fitting capability of our improved AKC-GPR algorithm is demonstrated by comparing with original AKC-GPRs with a maximum reduction in a MAPE of 35.28%. These promising findings suggest that the proposed ROM can serve as an effective approach for rapid and accurate vehicle flow predicting, enabling its application in engineering design analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣过客完成签到,获得积分10
刚刚
狐狸小姐完成签到,获得积分10
1秒前
慕山发布了新的文献求助10
1秒前
调研昵称发布了新的文献求助10
1秒前
remimazolam发布了新的文献求助10
1秒前
1秒前
小马甲应助杨玄采纳,获得10
2秒前
cd完成签到,获得积分10
2秒前
3秒前
李健应助哈哈哈哈哈采纳,获得10
3秒前
3秒前
3秒前
seven发布了新的文献求助10
4秒前
fdf发布了新的文献求助10
4秒前
秭归子归完成签到,获得积分10
6秒前
Maliketh应助微微采纳,获得10
6秒前
6秒前
6秒前
斯文败类应助zeng采纳,获得10
6秒前
王熊猫发布了新的文献求助10
6秒前
6秒前
6秒前
英俊的铭应助小白采纳,获得10
7秒前
细心蚂蚁完成签到,获得积分10
8秒前
Imwang完成签到,获得积分10
8秒前
Blaseaka完成签到 ,获得积分10
9秒前
彭于晏应助jiemy采纳,获得10
9秒前
9秒前
wy完成签到,获得积分10
9秒前
encounter发布了新的文献求助10
10秒前
10秒前
左西完成签到 ,获得积分10
10秒前
飘123发布了新的文献求助10
11秒前
yy123发布了新的文献求助10
11秒前
健壮惋清完成签到 ,获得积分10
11秒前
虾米YYY应助yang采纳,获得10
11秒前
angel完成签到,获得积分10
13秒前
14秒前
14秒前
terpyridine发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296012
求助须知:如何正确求助?哪些是违规求助? 2931918
关于积分的说明 8454114
捐赠科研通 2604414
什么是DOI,文献DOI怎么找? 1421736
科研通“疑难数据库(出版商)”最低求助积分说明 661190
邀请新用户注册赠送积分活动 644102