Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm

算法 克里金 平均绝对百分比误差 高斯过程 计算机科学 机器学习 流量(数学) 高超音速 人工智能 高斯分布 人工神经网络 工程类 数学 物理 航空航天工程 量子力学 几何学
作者
Yuxin Yang,Youtao Xue,Wenwen Zhao,Shaobo Yao,Chengrui Li,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:11
标识
DOI:10.1063/5.0183291
摘要

Conducting large-scale numerical computations to obtain flow field during the hypersonic vehicle engineering design phase can be excessively costly. Although deep learning algorithms enable rapid flow field prediction with high-precision, they require a significant investment in training samples, contradicting the motivation of reducing the cost of acquiring flow field. The combination of feature extraction algorithms and regression algorithms can also achieve high-precision prediction of flow fields, which is more suitable to tackle three-dimensional flow prediction with a small dataset. In this study, we propose a reduced-order model (ROM) for the three-dimensional hypersonic vehicle flow prediction utilizing proper orthogonal decomposition to extract representative features and Gaussian process regression with improved automatic kernel construction (AKC-GPR) to perform a nonlinear mapping of physical features for prediction. The selection of variables is based on sensitivity analysis and modal assurance criterion. The underlying relationship is unveiled between flow field variables and inflow conditions. The ROM exhibits high predictive accuracy, with mean absolute percentage error (MAPE) of total field less than 3.5%, when varying altitudes and Mach numbers. During angle of attack variations, the ROM only effectively reconstructs flow distribution by interpolation with a MAPE of 7.02%. The excellent small-sample fitting capability of our improved AKC-GPR algorithm is demonstrated by comparing with original AKC-GPRs with a maximum reduction in a MAPE of 35.28%. These promising findings suggest that the proposed ROM can serve as an effective approach for rapid and accurate vehicle flow predicting, enabling its application in engineering design analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangfan完成签到,获得积分10
刚刚
刚刚
柒柒捌捌完成签到,获得积分10
1秒前
花花发布了新的文献求助10
1秒前
1秒前
sherlock发布了新的文献求助10
1秒前
2秒前
此间少年郎完成签到 ,获得积分20
2秒前
2秒前
彭于晏应助aaa采纳,获得10
2秒前
2秒前
王汉堡完成签到,获得积分10
2秒前
Ava应助小菜鸟采纳,获得10
3秒前
2E发布了新的文献求助10
3秒前
张美丽完成签到,获得积分10
3秒前
ming发布了新的文献求助10
3秒前
科研通AI5应助张棋欢采纳,获得10
3秒前
4秒前
想要礼物的艾斯米拉达完成签到,获得积分10
4秒前
贺梦妍发布了新的文献求助10
5秒前
天蓝完成签到,获得积分10
5秒前
fanfan44390发布了新的文献求助10
6秒前
CCH完成签到,获得积分10
6秒前
着急的书白完成签到,获得积分20
7秒前
tracy10完成签到,获得积分10
7秒前
zzj完成签到,获得积分10
7秒前
7秒前
敬鱼完成签到,获得积分10
8秒前
风风发布了新的文献求助10
8秒前
科目三应助00采纳,获得10
8秒前
可爱的函函应助liulangnmg采纳,获得20
9秒前
科研通AI6应助咖啡豆采纳,获得50
9秒前
老干部发布了新的文献求助10
9秒前
9秒前
敬鱼发布了新的文献求助10
11秒前
雾里完成签到,获得积分10
11秒前
CCH发布了新的文献求助10
11秒前
12秒前
李健应助王灿章采纳,获得10
12秒前
科研通AI5应助月亮采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874