Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm

算法 克里金 平均绝对百分比误差 高斯过程 计算机科学 机器学习 流量(数学) 高超音速 人工智能 高斯分布 人工神经网络 工程类 数学 物理 航空航天工程 量子力学 几何学
作者
Yuxin Yang,Youtao Xue,Wenwen Zhao,Shaobo Yao,Chengrui Li,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:9
标识
DOI:10.1063/5.0183291
摘要

Conducting large-scale numerical computations to obtain flow field during the hypersonic vehicle engineering design phase can be excessively costly. Although deep learning algorithms enable rapid flow field prediction with high-precision, they require a significant investment in training samples, contradicting the motivation of reducing the cost of acquiring flow field. The combination of feature extraction algorithms and regression algorithms can also achieve high-precision prediction of flow fields, which is more suitable to tackle three-dimensional flow prediction with a small dataset. In this study, we propose a reduced-order model (ROM) for the three-dimensional hypersonic vehicle flow prediction utilizing proper orthogonal decomposition to extract representative features and Gaussian process regression with improved automatic kernel construction (AKC-GPR) to perform a nonlinear mapping of physical features for prediction. The selection of variables is based on sensitivity analysis and modal assurance criterion. The underlying relationship is unveiled between flow field variables and inflow conditions. The ROM exhibits high predictive accuracy, with mean absolute percentage error (MAPE) of total field less than 3.5%, when varying altitudes and Mach numbers. During angle of attack variations, the ROM only effectively reconstructs flow distribution by interpolation with a MAPE of 7.02%. The excellent small-sample fitting capability of our improved AKC-GPR algorithm is demonstrated by comparing with original AKC-GPRs with a maximum reduction in a MAPE of 35.28%. These promising findings suggest that the proposed ROM can serve as an effective approach for rapid and accurate vehicle flow predicting, enabling its application in engineering design analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助若狂采纳,获得10
1秒前
小蘑菇应助阿美采纳,获得30
1秒前
科研通AI2S应助机智小虾米采纳,获得10
2秒前
充电宝应助Xx.采纳,获得10
3秒前
zhangscience发布了新的文献求助10
4秒前
深情安青应助大方嵩采纳,获得10
5秒前
英俊的铭应助大方嵩采纳,获得10
5秒前
李还好完成签到,获得积分10
6秒前
满意的柏柳完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
buno应助88采纳,获得10
9秒前
10秒前
三千世界完成签到,获得积分10
10秒前
10秒前
愉快的访旋完成签到,获得积分10
11秒前
Alpha完成签到,获得积分10
12秒前
大大发布了新的文献求助30
12秒前
翠翠发布了新的文献求助10
13秒前
半山发布了新的文献求助10
14秒前
14秒前
天天快乐应助CO2采纳,获得10
14秒前
隐形曼青应助junzilan采纳,获得10
15秒前
Dksido发布了新的文献求助10
15秒前
16秒前
思源应助卓哥采纳,获得10
16秒前
mysci完成签到,获得积分10
19秒前
20秒前
Quzhengkai发布了新的文献求助10
21秒前
21秒前
22秒前
落寞晓灵完成签到,获得积分10
22秒前
ORAzzz应助翠翠采纳,获得20
23秒前
zoe完成签到,获得积分10
23秒前
习习应助学术小白采纳,获得10
23秒前
24秒前
25秒前
tianny关注了科研通微信公众号
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808