Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm

算法 克里金 平均绝对百分比误差 高斯过程 计算机科学 机器学习 流量(数学) 高超音速 人工智能 高斯分布 人工神经网络 工程类 数学 物理 航空航天工程 几何学 量子力学
作者
Yuxin Yang,Youtao Xue,Wenwen Zhao,Shaobo Yao,Chengrui Li,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:11
标识
DOI:10.1063/5.0183291
摘要

Conducting large-scale numerical computations to obtain flow field during the hypersonic vehicle engineering design phase can be excessively costly. Although deep learning algorithms enable rapid flow field prediction with high-precision, they require a significant investment in training samples, contradicting the motivation of reducing the cost of acquiring flow field. The combination of feature extraction algorithms and regression algorithms can also achieve high-precision prediction of flow fields, which is more suitable to tackle three-dimensional flow prediction with a small dataset. In this study, we propose a reduced-order model (ROM) for the three-dimensional hypersonic vehicle flow prediction utilizing proper orthogonal decomposition to extract representative features and Gaussian process regression with improved automatic kernel construction (AKC-GPR) to perform a nonlinear mapping of physical features for prediction. The selection of variables is based on sensitivity analysis and modal assurance criterion. The underlying relationship is unveiled between flow field variables and inflow conditions. The ROM exhibits high predictive accuracy, with mean absolute percentage error (MAPE) of total field less than 3.5%, when varying altitudes and Mach numbers. During angle of attack variations, the ROM only effectively reconstructs flow distribution by interpolation with a MAPE of 7.02%. The excellent small-sample fitting capability of our improved AKC-GPR algorithm is demonstrated by comparing with original AKC-GPRs with a maximum reduction in a MAPE of 35.28%. These promising findings suggest that the proposed ROM can serve as an effective approach for rapid and accurate vehicle flow predicting, enabling its application in engineering design analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABC发布了新的文献求助10
1秒前
1秒前
I1waml完成签到 ,获得积分10
1秒前
mengyingxu完成签到,获得积分20
1秒前
慕青应助Pluto0o采纳,获得10
2秒前
黄成完成签到,获得积分10
3秒前
fixit完成签到,获得积分10
3秒前
诗和远方的,应助cheng采纳,获得10
4秒前
5秒前
wqG完成签到,获得积分10
5秒前
慕慕倾完成签到,获得积分10
5秒前
平安喜乐发布了新的文献求助10
5秒前
6秒前
6秒前
小严完成签到,获得积分10
6秒前
pp完成签到,获得积分10
6秒前
YFovY完成签到,获得积分10
7秒前
星辰大海应助CDKSEVEN采纳,获得10
7秒前
SYLH应助bwh采纳,获得10
7秒前
7秒前
wph发布了新的文献求助10
8秒前
miemie完成签到,获得积分10
9秒前
9秒前
今后应助赵田采纳,获得10
9秒前
ailiceSa发布了新的文献求助10
10秒前
上官若男应助鱼鱼采纳,获得10
10秒前
斯文败类应助猪猪hero采纳,获得10
10秒前
10秒前
罗氏集团完成签到,获得积分10
10秒前
葛怀锐发布了新的文献求助10
11秒前
orixero应助Quinny采纳,获得10
11秒前
ahsh发布了新的文献求助10
11秒前
落寞凌波应助渣渣凡采纳,获得20
11秒前
博士伦666发布了新的文献求助10
11秒前
沧浪江完成签到,获得积分10
12秒前
唐落音完成签到,获得积分10
12秒前
辜越涛发布了新的文献求助10
13秒前
lll完成签到,获得积分10
13秒前
Yyang完成签到,获得积分10
13秒前
在水一方应助water60采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023050
求助须知:如何正确求助?哪些是违规求助? 3563182
关于积分的说明 11341463
捐赠科研通 3294761
什么是DOI,文献DOI怎么找? 1814755
邀请新用户注册赠送积分活动 889456
科研通“疑难数据库(出版商)”最低求助积分说明 812930