Fast flow field prediction of three-dimensional hypersonic vehicles using an improved Gaussian process regression algorithm

算法 克里金 平均绝对百分比误差 高斯过程 计算机科学 机器学习 流量(数学) 高超音速 人工智能 高斯分布 人工神经网络 工程类 数学 物理 航空航天工程 几何学 量子力学
作者
Yuxin Yang,Youtao Xue,Wenwen Zhao,Shaobo Yao,Chengrui Li,Changju Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (1) 被引量:11
标识
DOI:10.1063/5.0183291
摘要

Conducting large-scale numerical computations to obtain flow field during the hypersonic vehicle engineering design phase can be excessively costly. Although deep learning algorithms enable rapid flow field prediction with high-precision, they require a significant investment in training samples, contradicting the motivation of reducing the cost of acquiring flow field. The combination of feature extraction algorithms and regression algorithms can also achieve high-precision prediction of flow fields, which is more suitable to tackle three-dimensional flow prediction with a small dataset. In this study, we propose a reduced-order model (ROM) for the three-dimensional hypersonic vehicle flow prediction utilizing proper orthogonal decomposition to extract representative features and Gaussian process regression with improved automatic kernel construction (AKC-GPR) to perform a nonlinear mapping of physical features for prediction. The selection of variables is based on sensitivity analysis and modal assurance criterion. The underlying relationship is unveiled between flow field variables and inflow conditions. The ROM exhibits high predictive accuracy, with mean absolute percentage error (MAPE) of total field less than 3.5%, when varying altitudes and Mach numbers. During angle of attack variations, the ROM only effectively reconstructs flow distribution by interpolation with a MAPE of 7.02%. The excellent small-sample fitting capability of our improved AKC-GPR algorithm is demonstrated by comparing with original AKC-GPRs with a maximum reduction in a MAPE of 35.28%. These promising findings suggest that the proposed ROM can serve as an effective approach for rapid and accurate vehicle flow predicting, enabling its application in engineering design analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jing发布了新的文献求助50
2秒前
2秒前
2秒前
lvhuiqi发布了新的文献求助10
3秒前
所所应助shanjianjie采纳,获得10
3秒前
xc完成签到,获得积分10
3秒前
5秒前
风趣雪一完成签到,获得积分10
5秒前
华仔应助乖宝采纳,获得10
5秒前
感动的雁枫完成签到,获得积分10
6秒前
dhsnh发布了新的文献求助10
6秒前
6秒前
丘比特应助直率雪曼采纳,获得10
8秒前
科研小菜完成签到,获得积分10
9秒前
9秒前
天天快乐应助耶布达采纳,获得10
9秒前
科研通AI6应助灵泽采纳,获得10
10秒前
lx完成签到,获得积分10
11秒前
留白留白发布了新的文献求助10
11秒前
我是老大应助非言墨语采纳,获得10
11秒前
典雅的丹寒完成签到,获得积分10
11秒前
12秒前
13秒前
汉堡包应助酆天菱采纳,获得10
13秒前
慕青应助lvhuiqi采纳,获得10
15秒前
zhao完成签到,获得积分10
15秒前
小陈完成签到,获得积分10
16秒前
16秒前
shanjianjie完成签到,获得积分10
17秒前
samantha发布了新的文献求助20
17秒前
科研通AI6应助火星上如花采纳,获得10
17秒前
科研通AI6应助火星上如花采纳,获得10
17秒前
一飞冲天的刺猬完成签到,获得积分10
17秒前
萝卜完成签到,获得积分10
18秒前
虫二发布了新的文献求助10
18秒前
大模型应助周周采纳,获得20
19秒前
研友_VZG7GZ应助z落水无痕采纳,获得10
20秒前
20秒前
乖宝发布了新的文献求助10
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339665
求助须知:如何正确求助?哪些是违规求助? 4476410
关于积分的说明 13931491
捐赠科研通 4371956
什么是DOI,文献DOI怎么找? 2402218
邀请新用户注册赠送积分活动 1395083
关于科研通互助平台的介绍 1367077