Differentiated Attention Guided Network Over Hierarchical and Aggregated Features for Intelligent UAV Surveillance

计算机科学 背景(考古学) 特征(语言学) 判别式 目标检测 人工智能 频道(广播) 空间语境意识 特征提取 模式识别(心理学) 计算机网络 语言学 生物 哲学 古生物学
作者
Houzhang Fang,Zikai Liao,Xuhua Wang,Yi Chang,Luxin Yan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (9): 9909-9920 被引量:15
标识
DOI:10.1109/tii.2022.3232777
摘要

Intelligent unmanned aerial vehicle (UAV) surveillance based on infrared imaging has wide applications in the anti-UAV system for protecting urban security and aerial safety. However, weak target features and complex background distraction pose great challenges for the accurate detection of UAVs. To address this issue, we propose a novel differentiated attention guided network to adaptively strengthen the discriminative features between UAV targets and complex background. First, a novel spatial-aware channel attention (SCA) is introduced into deep layers via preserving critical spatial features and leveraging channel interdependencies to focus on the large-scale targets. The channel-modulated deformable spatial attention is introduced into shallow layers via refining channel context and dynamically perceiving the spatial features for focusing on the small-scale targets. A combination of the above two attention mechanisms is employed in intermediate layers of the network for concentrating on the medium-scale targets. Then, we embed a feature aggregator at the detection branches to guide the information exchange of high-level feature maps and low-level feature maps with a bottom-up context modulation, and integrate an SCA at the end to further boost the distinctive feature representation for task-awareness. The above design can adaptively enhance multiscale UAV target features and suppress complex background interferences, leading to better detection performance, especially for small targets. Extensive experiments on real infrared UAV datasets reveal that the proposed method outperforms the baseline object detectors by a large margin, validating its feasibility in real-world infrared UAV detection. The source code can be found at https://github.com/KALEIDOSCOPEIP/DAGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特觅翠应助尔东采纳,获得20
1秒前
7777发布了新的文献求助10
3秒前
LL发布了新的文献求助10
3秒前
爆米花应助hello11采纳,获得10
3秒前
4秒前
onmyway完成签到,获得积分10
6秒前
estate完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
不配.应助科研通管家采纳,获得10
6秒前
6秒前
不配.应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
沐风应助科研通管家采纳,获得20
7秒前
桐桐应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
糕糕完成签到 ,获得积分10
7秒前
BitBong完成签到,获得积分10
11秒前
贤惠的碧空完成签到,获得积分10
12秒前
13秒前
叶叶叶完成签到,获得积分10
15秒前
15秒前
18秒前
19秒前
WW发布了新的文献求助30
19秒前
可爱的函函应助刘大恒采纳,获得10
21秒前
21秒前
所所应助冷艳的发卡采纳,获得10
22秒前
毕坚强发布了新的文献求助10
24秒前
24秒前
科研通AI2S应助皮卡皮卡丘采纳,获得10
26秒前
27秒前
28秒前
29秒前
共享精神应助郎中张先森采纳,获得10
31秒前
香蕉觅云应助俭朴问凝采纳,获得10
31秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206752
求助须知:如何正确求助?哪些是违规求助? 2856202
关于积分的说明 8103078
捐赠科研通 2521321
什么是DOI,文献DOI怎么找? 1354373
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613209