Differentiated Attention Guided Network Over Hierarchical and Aggregated Features for Intelligent UAV Surveillance

计算机科学 背景(考古学) 特征(语言学) 判别式 目标检测 人工智能 频道(广播) 空间语境意识 特征提取 模式识别(心理学) 计算机网络 语言学 生物 哲学 古生物学
作者
Houzhang Fang,Zikai Liao,Xuhua Wang,Yi Chang,Luxin Yan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (9): 9909-9920 被引量:32
标识
DOI:10.1109/tii.2022.3232777
摘要

Intelligent unmanned aerial vehicle (UAV) surveillance based on infrared imaging has wide applications in the anti-UAV system for protecting urban security and aerial safety. However, weak target features and complex background distraction pose great challenges for the accurate detection of UAVs. To address this issue, we propose a novel differentiated attention guided network to adaptively strengthen the discriminative features between UAV targets and complex background. First, a novel spatial-aware channel attention (SCA) is introduced into deep layers via preserving critical spatial features and leveraging channel interdependencies to focus on the large-scale targets. The channel-modulated deformable spatial attention is introduced into shallow layers via refining channel context and dynamically perceiving the spatial features for focusing on the small-scale targets. A combination of the above two attention mechanisms is employed in intermediate layers of the network for concentrating on the medium-scale targets. Then, we embed a feature aggregator at the detection branches to guide the information exchange of high-level feature maps and low-level feature maps with a bottom-up context modulation, and integrate an SCA at the end to further boost the distinctive feature representation for task-awareness. The above design can adaptively enhance multiscale UAV target features and suppress complex background interferences, leading to better detection performance, especially for small targets. Extensive experiments on real infrared UAV datasets reveal that the proposed method outperforms the baseline object detectors by a large margin, validating its feasibility in real-world infrared UAV detection. The source code can be found at https://github.com/KALEIDOSCOPEIP/DAGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DONG发布了新的文献求助10
刚刚
Cooper应助fafafa采纳,获得10
2秒前
Nuyoah完成签到 ,获得积分10
3秒前
婵羽完成签到,获得积分10
3秒前
4秒前
liu发布了新的文献求助10
4秒前
orixero应助zx采纳,获得10
5秒前
元元完成签到,获得积分10
7秒前
7秒前
biocreater完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
葳蕤完成签到 ,获得积分10
8秒前
8秒前
FashionBoy应助徐徐俊采纳,获得10
10秒前
xw完成签到,获得积分20
12秒前
13秒前
car完成签到 ,获得积分10
13秒前
123完成签到,获得积分20
13秒前
15秒前
15秒前
哈哈2022完成签到,获得积分10
15秒前
amanda发布了新的文献求助10
18秒前
浅浅依云完成签到,获得积分10
18秒前
领导范儿应助LZR采纳,获得10
19秒前
李健应助凡凡采纳,获得10
19秒前
19秒前
123发布了新的文献求助10
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
龙成阳完成签到 ,获得积分10
22秒前
笑点低豆芽完成签到,获得积分10
22秒前
22秒前
xw发布了新的文献求助10
23秒前
24秒前
简单刺猬完成签到,获得积分10
24秒前
24秒前
24秒前
Sweet完成签到,获得积分10
26秒前
27秒前
Ffan完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838