Differentiated Attention Guided Network Over Hierarchical and Aggregated Features for Intelligent UAV Surveillance

计算机科学 背景(考古学) 特征(语言学) 判别式 目标检测 人工智能 频道(广播) 空间语境意识 特征提取 模式识别(心理学) 计算机网络 语言学 生物 哲学 古生物学
作者
Houzhang Fang,Zikai Liao,Xuhua Wang,Yi Chang,Luxin Yan
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (9): 9909-9920 被引量:32
标识
DOI:10.1109/tii.2022.3232777
摘要

Intelligent unmanned aerial vehicle (UAV) surveillance based on infrared imaging has wide applications in the anti-UAV system for protecting urban security and aerial safety. However, weak target features and complex background distraction pose great challenges for the accurate detection of UAVs. To address this issue, we propose a novel differentiated attention guided network to adaptively strengthen the discriminative features between UAV targets and complex background. First, a novel spatial-aware channel attention (SCA) is introduced into deep layers via preserving critical spatial features and leveraging channel interdependencies to focus on the large-scale targets. The channel-modulated deformable spatial attention is introduced into shallow layers via refining channel context and dynamically perceiving the spatial features for focusing on the small-scale targets. A combination of the above two attention mechanisms is employed in intermediate layers of the network for concentrating on the medium-scale targets. Then, we embed a feature aggregator at the detection branches to guide the information exchange of high-level feature maps and low-level feature maps with a bottom-up context modulation, and integrate an SCA at the end to further boost the distinctive feature representation for task-awareness. The above design can adaptively enhance multiscale UAV target features and suppress complex background interferences, leading to better detection performance, especially for small targets. Extensive experiments on real infrared UAV datasets reveal that the proposed method outperforms the baseline object detectors by a large margin, validating its feasibility in real-world infrared UAV detection. The source code can be found at https://github.com/KALEIDOSCOPEIP/DAGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
Tourist应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
live_28126发布了新的文献求助10
1秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
JAY关闭了JAY文献求助
6秒前
7秒前
打打应助Netsky采纳,获得10
7秒前
小小富应助mos2003采纳,获得10
9秒前
科研通AI6应助xjc采纳,获得10
9秒前
穿山的百足公主完成签到 ,获得积分10
12秒前
寒冷的士萧关注了科研通微信公众号
12秒前
pig_chivalrous完成签到,获得积分10
12秒前
深情安青应助彩色芝麻采纳,获得10
14秒前
完美世界应助xjc采纳,获得10
18秒前
demoliu发布了新的文献求助10
20秒前
20秒前
这这这完成签到 ,获得积分20
23秒前
喃喃发布了新的文献求助10
24秒前
科研通AI6应助xjc采纳,获得10
27秒前
归宁完成签到,获得积分10
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
寻道图强应助Momo采纳,获得30
29秒前
31秒前
32秒前
33秒前
bkagyin应助vicki采纳,获得10
33秒前
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421595
求助须知:如何正确求助?哪些是违规求助? 4536472
关于积分的说明 14154046
捐赠科研通 4453116
什么是DOI,文献DOI怎么找? 2442724
邀请新用户注册赠送积分活动 1434116
关于科研通互助平台的介绍 1411268