强化学习
计算机科学
分布式计算
排队
调度(生产过程)
排队论
动态优先级调度
机器人
任务(项目管理)
两级调度
公平份额计划
作业车间调度
人工智能
实时计算
数学优化
计算机网络
服务质量
工程类
数学
布线(电子设计自动化)
系统工程
作者
Tai Manh Ho,Kim Khoa Nguyen,Mohamed Cheriet
标识
DOI:10.1109/globecom48099.2022.10000980
摘要
In this paper, we investigate the problem of task scheduling in automated warehouses with hetero-geneous autonomous robotic systems. We formulate the task scheduling for a heterogeneous autonomous robots (HAR) system in each warehouse as a queueing control optimization problem in which we aim to minimize the queue length of tasks that are waiting to be processed. We propose a deep reinforcement learning (DRL) based approach that employs the proximal policy optimization (PPO) to achieve an optimal task scheduling policy. We then propose a federated learning based algorithm to improve the performance of the PPO agents. The simulation results fully demonstrate the performance improvement of our proposed algorithm in terms of average queue length compared to the distributed learning algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI