Unsupervised Adaptive Feature Selection With Binary Hashing

判别式 散列函数 计算机科学 人工智能 模式识别(心理学) 特征选择 降维 特征(语言学) 特征学习 二进制代码 特征提取 特征哈希 二进制数 机器学习 哈希表 数学 双重哈希 哲学 算术 语言学 计算机安全
作者
Dan Shi,Lei Zhu,Jingjing Li,Zheng Zhang,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 838-853 被引量:40
标识
DOI:10.1109/tip.2023.3234497
摘要

Unsupervised feature selection chooses a subset of discriminative features to reduce feature dimension under the unsupervised learning paradigm. Although lots of efforts have been made so far, existing solutions perform feature selection either without any label guidance or with only single pseudo label guidance. They may cause significant information loss and lead to semantic shortage of the selected features as many real-world data, such as images and videos are generally annotated with multiple labels. In this paper, we propose a new Unsupervised Adaptive Feature Selection with Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly-supervised multi-labels and simultaneously exploits the learned labels to guide feature selection. Specifically, in order to exploit the discriminative information under the unsupervised scenarios, the weakly-supervised multi-labels are learned automatically by specially imposing binary hash constraints on the spectral embedding process to guide the ultimate feature selection. The number of weakly-supervised multi-labels (the number of "1" in binary hash codes) is adaptively determined according to the specific data content. Further, to enhance the discriminative capability of binary labels, we model the intrinsic data structure by adaptively constructing the dynamic similarity graph. Finally, we extend UAFS-BH to multi-view setting as Multi-view Feature Selection with Binary Hashing (MVFS-BH) to handle the multi-view feature selection problem. An effective binary optimization method based on the Augmented Lagrangian Multiple (ALM) is derived to iteratively solve the formulated problem. Extensive experiments on widely tested benchmarks demonstrate the state-of-the-art performance of the proposed method on both single-view and multi-view feature selection tasks. For the purpose of reproducibility, we provide the source codes and testing datasets at https://github.com/shidan0122/UMFS.git..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brot_12发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
威武香水应助七七采纳,获得10
2秒前
暮葵发布了新的文献求助10
2秒前
HHH发布了新的文献求助10
3秒前
香蕉觅云应助寒月如雪采纳,获得10
5秒前
lwlwlw发布了新的文献求助10
5秒前
czh应助xzy998采纳,获得10
5秒前
xctdyl1992发布了新的文献求助10
6秒前
xyx完成签到,获得积分20
6秒前
sunliying完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
星辰大海应助charles采纳,获得10
9秒前
11秒前
活泼的石头完成签到,获得积分10
11秒前
ddd发布了新的文献求助10
11秒前
失眠书蝶完成签到 ,获得积分10
12秒前
老王完成签到,获得积分10
12秒前
13秒前
曾宪俊发布了新的文献求助10
13秒前
小小周发布了新的文献求助10
14秒前
坦率的匪应助雪山飞龙采纳,获得10
14秒前
神勇的秋完成签到,获得积分10
14秒前
dbl完成签到,获得积分10
15秒前
顾矜应助123采纳,获得10
15秒前
111发布了新的文献求助30
16秒前
dbl发布了新的文献求助10
17秒前
JYX完成签到 ,获得积分10
17秒前
BK_发布了新的文献求助10
19秒前
Ava应助ddd采纳,获得10
21秒前
ginny完成签到,获得积分10
22秒前
bbbui完成签到 ,获得积分10
22秒前
23秒前
sdniuidifod发布了新的文献求助10
26秒前
小小周完成签到,获得积分10
26秒前
27秒前
28秒前
顾矜应助xctdyl1992采纳,获得10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160