Unsupervised Adaptive Feature Selection With Binary Hashing

判别式 散列函数 计算机科学 人工智能 模式识别(心理学) 特征选择 降维 特征(语言学) 特征学习 二进制代码 特征提取 特征哈希 二进制数 机器学习 哈希表 数学 双重哈希 哲学 算术 语言学 计算机安全
作者
Dan Shi,Lei Zhu,Jingjing Li,Zheng Zhang,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 838-853 被引量:48
标识
DOI:10.1109/tip.2023.3234497
摘要

Unsupervised feature selection chooses a subset of discriminative features to reduce feature dimension under the unsupervised learning paradigm. Although lots of efforts have been made so far, existing solutions perform feature selection either without any label guidance or with only single pseudo label guidance. They may cause significant information loss and lead to semantic shortage of the selected features as many real-world data, such as images and videos are generally annotated with multiple labels. In this paper, we propose a new Unsupervised Adaptive Feature Selection with Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly-supervised multi-labels and simultaneously exploits the learned labels to guide feature selection. Specifically, in order to exploit the discriminative information under the unsupervised scenarios, the weakly-supervised multi-labels are learned automatically by specially imposing binary hash constraints on the spectral embedding process to guide the ultimate feature selection. The number of weakly-supervised multi-labels (the number of "1" in binary hash codes) is adaptively determined according to the specific data content. Further, to enhance the discriminative capability of binary labels, we model the intrinsic data structure by adaptively constructing the dynamic similarity graph. Finally, we extend UAFS-BH to multi-view setting as Multi-view Feature Selection with Binary Hashing (MVFS-BH) to handle the multi-view feature selection problem. An effective binary optimization method based on the Augmented Lagrangian Multiple (ALM) is derived to iteratively solve the formulated problem. Extensive experiments on widely tested benchmarks demonstrate the state-of-the-art performance of the proposed method on both single-view and multi-view feature selection tasks. For the purpose of reproducibility, we provide the source codes and testing datasets at https://github.com/shidan0122/UMFS.git..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
ayeben发布了新的文献求助10
3秒前
我爱亲柠檬完成签到,获得积分10
3秒前
蔬菜小鸟完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助行走的鱼采纳,获得10
4秒前
rainbow完成签到,获得积分10
5秒前
5秒前
BlackP完成签到,获得积分10
6秒前
赘婿应助Akoasm采纳,获得10
6秒前
6秒前
昔年若许完成签到,获得积分10
6秒前
7秒前
syk发布了新的文献求助10
7秒前
Feng发布了新的文献求助10
9秒前
无情的宛儿完成签到,获得积分10
9秒前
婷婷应助健壮的悟空采纳,获得10
9秒前
10秒前
nuaa_shy应助猪猪hero采纳,获得10
10秒前
半晴完成签到,获得积分10
10秒前
共享精神应助大气菠萝采纳,获得10
11秒前
12秒前
12秒前
deserted完成签到,获得积分10
12秒前
芝士完成签到 ,获得积分10
12秒前
冰华完成签到,获得积分10
13秒前
15秒前
purple1212完成签到,获得积分10
15秒前
16秒前
无心的梦蕊完成签到,获得积分10
18秒前
酷波er应助syk采纳,获得10
18秒前
sduweiyu完成签到 ,获得积分0
18秒前
Cdragon完成签到,获得积分10
18秒前
return33完成签到,获得积分10
19秒前
MM发布了新的文献求助20
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735237
求助须知:如何正确求助?哪些是违规求助? 5359154
关于积分的说明 15328898
捐赠科研通 4879502
什么是DOI,文献DOI怎么找? 2622007
邀请新用户注册赠送积分活动 1571188
关于科研通互助平台的介绍 1527971