Unsupervised Adaptive Feature Selection With Binary Hashing

判别式 散列函数 计算机科学 人工智能 模式识别(心理学) 特征选择 降维 特征(语言学) 特征学习 二进制代码 特征提取 二进制数 机器学习 数学 算术 哲学 语言学 计算机安全
作者
Dan Shi,Lei Zhu,Jingjing Li,Zheng Zhang,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 838-853 被引量:8
标识
DOI:10.1109/tip.2023.3234497
摘要

Unsupervised feature selection chooses a subset of discriminative features to reduce feature dimension under the unsupervised learning paradigm. Although lots of efforts have been made so far, existing solutions perform feature selection either without any label guidance or with only single pseudo label guidance. They may cause significant information loss and lead to semantic shortage of the selected features as many real-world data, such as images and videos are generally annotated with multiple labels. In this paper, we propose a new Unsupervised Adaptive Feature Selection with Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly-supervised multi-labels and simultaneously exploits the learned labels to guide feature selection. Specifically, in order to exploit the discriminative information under the unsupervised scenarios, the weakly-supervised multi-labels are learned automatically by specially imposing binary hash constraints on the spectral embedding process to guide the ultimate feature selection. The number of weakly-supervised multi-labels (the number of “1” in binary hash codes) is adaptively determined according to the specific data content. Further, to enhance the discriminative capability of binary labels, we model the intrinsic data structure by adaptively constructing the dynamic similarity graph. Finally, we extend UAFS-BH to multi-view setting as Multi-view Feature Selection with Binary Hashing (MVFS-BH) to handle the multi-view feature selection problem. An effective binary optimization method based on the Augmented Lagrangian Multiple (ALM) is derived to iteratively solve the formulated problem. Extensive experiments on widely tested benchmarks demonstrate the state-of-the-art performance of the proposed method on both single-view and multi-view feature selection tasks. For the purpose of reproducibility, we provide the source codes and testing datasets at https://github.com/shidan0122/UMFS.git ..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助wxyllxx采纳,获得10
1秒前
七月不看海完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
4秒前
充电宝应助等待的道消采纳,获得10
5秒前
彭于晏应助麻薯头头采纳,获得10
5秒前
Li完成签到,获得积分10
6秒前
JJ发布了新的文献求助10
9秒前
yiyi131发布了新的文献求助10
9秒前
天真凡灵完成签到,获得积分10
9秒前
samuel完成签到,获得积分10
10秒前
11秒前
Jasper应助YY采纳,获得30
12秒前
科研通AI2S应助ccq采纳,获得10
14秒前
甜橙发布了新的文献求助10
15秒前
研友_ndDGVn发布了新的文献求助10
16秒前
dominate应助centlay采纳,获得10
17秒前
桐桐应助wxyllxx采纳,获得10
18秒前
21秒前
21秒前
23秒前
gdh发布了新的文献求助10
25秒前
25秒前
麻薯头头发布了新的文献求助10
28秒前
活泼酸奶完成签到,获得积分10
28秒前
long完成签到 ,获得积分10
29秒前
31秒前
31秒前
gdh完成签到,获得积分10
31秒前
35秒前
35秒前
阿波罗完成签到,获得积分10
37秒前
肖窈发布了新的文献求助10
41秒前
Owen应助wxyllxx采纳,获得20
42秒前
44秒前
44秒前
hesongwen发布了新的文献求助10
48秒前
wyz完成签到 ,获得积分10
48秒前
wuanmuu完成签到 ,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023