Unsupervised Adaptive Feature Selection With Binary Hashing

判别式 散列函数 计算机科学 人工智能 模式识别(心理学) 特征选择 降维 特征(语言学) 特征学习 二进制代码 特征提取 特征哈希 二进制数 机器学习 哈希表 数学 双重哈希 哲学 算术 语言学 计算机安全
作者
Dan Shi,Lei Zhu,Jingjing Li,Zheng Zhang,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 838-853 被引量:40
标识
DOI:10.1109/tip.2023.3234497
摘要

Unsupervised feature selection chooses a subset of discriminative features to reduce feature dimension under the unsupervised learning paradigm. Although lots of efforts have been made so far, existing solutions perform feature selection either without any label guidance or with only single pseudo label guidance. They may cause significant information loss and lead to semantic shortage of the selected features as many real-world data, such as images and videos are generally annotated with multiple labels. In this paper, we propose a new Unsupervised Adaptive Feature Selection with Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly-supervised multi-labels and simultaneously exploits the learned labels to guide feature selection. Specifically, in order to exploit the discriminative information under the unsupervised scenarios, the weakly-supervised multi-labels are learned automatically by specially imposing binary hash constraints on the spectral embedding process to guide the ultimate feature selection. The number of weakly-supervised multi-labels (the number of "1" in binary hash codes) is adaptively determined according to the specific data content. Further, to enhance the discriminative capability of binary labels, we model the intrinsic data structure by adaptively constructing the dynamic similarity graph. Finally, we extend UAFS-BH to multi-view setting as Multi-view Feature Selection with Binary Hashing (MVFS-BH) to handle the multi-view feature selection problem. An effective binary optimization method based on the Augmented Lagrangian Multiple (ALM) is derived to iteratively solve the formulated problem. Extensive experiments on widely tested benchmarks demonstrate the state-of-the-art performance of the proposed method on both single-view and multi-view feature selection tasks. For the purpose of reproducibility, we provide the source codes and testing datasets at https://github.com/shidan0122/UMFS.git..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助深霖阳光采纳,获得30
4秒前
华子黄发布了新的文献求助10
4秒前
5秒前
5秒前
情怀应助活泼的海豚采纳,获得10
5秒前
CipherSage应助carbon-dots采纳,获得10
5秒前
动听寄云发布了新的文献求助10
5秒前
完美世界应助大力的含卉采纳,获得10
5秒前
李爱国应助嘎嘣脆采纳,获得10
7秒前
小小完成签到 ,获得积分10
7秒前
帆布鞋完成签到,获得积分10
9秒前
蓝胖子完成签到,获得积分10
9秒前
9秒前
stwcsu发布了新的文献求助10
10秒前
10秒前
大家好完成签到 ,获得积分10
13秒前
13秒前
妥妥酱完成签到,获得积分10
15秒前
朴实的乌龟完成签到,获得积分10
15秒前
17秒前
18秒前
19秒前
眼睛大鸡翅完成签到,获得积分10
20秒前
20秒前
Lucas应助深霖阳光采纳,获得30
21秒前
GGbond发布了新的文献求助10
23秒前
24秒前
26秒前
gu发布了新的文献求助20
27秒前
FashionBoy应助幸福剑身采纳,获得10
28秒前
KKKZ发布了新的文献求助10
30秒前
酷波er应助BBH采纳,获得10
31秒前
33秒前
35秒前
35秒前
35秒前
36秒前
36秒前
GGbond完成签到,获得积分10
37秒前
阿幽完成签到 ,获得积分10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901