Unsupervised Adaptive Feature Selection With Binary Hashing

判别式 散列函数 计算机科学 人工智能 模式识别(心理学) 特征选择 降维 特征(语言学) 特征学习 二进制代码 特征提取 特征哈希 二进制数 机器学习 哈希表 数学 双重哈希 哲学 算术 语言学 计算机安全
作者
Dan Shi,Lei Zhu,Jingjing Li,Zheng Zhang,Xiaojun Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 838-853 被引量:48
标识
DOI:10.1109/tip.2023.3234497
摘要

Unsupervised feature selection chooses a subset of discriminative features to reduce feature dimension under the unsupervised learning paradigm. Although lots of efforts have been made so far, existing solutions perform feature selection either without any label guidance or with only single pseudo label guidance. They may cause significant information loss and lead to semantic shortage of the selected features as many real-world data, such as images and videos are generally annotated with multiple labels. In this paper, we propose a new Unsupervised Adaptive Feature Selection with Binary Hashing (UAFS-BH) model, which learns binary hash codes as weakly-supervised multi-labels and simultaneously exploits the learned labels to guide feature selection. Specifically, in order to exploit the discriminative information under the unsupervised scenarios, the weakly-supervised multi-labels are learned automatically by specially imposing binary hash constraints on the spectral embedding process to guide the ultimate feature selection. The number of weakly-supervised multi-labels (the number of "1" in binary hash codes) is adaptively determined according to the specific data content. Further, to enhance the discriminative capability of binary labels, we model the intrinsic data structure by adaptively constructing the dynamic similarity graph. Finally, we extend UAFS-BH to multi-view setting as Multi-view Feature Selection with Binary Hashing (MVFS-BH) to handle the multi-view feature selection problem. An effective binary optimization method based on the Augmented Lagrangian Multiple (ALM) is derived to iteratively solve the formulated problem. Extensive experiments on widely tested benchmarks demonstrate the state-of-the-art performance of the proposed method on both single-view and multi-view feature selection tasks. For the purpose of reproducibility, we provide the source codes and testing datasets at https://github.com/shidan0122/UMFS.git..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobaye完成签到,获得积分10
刚刚
大壮发布了新的文献求助10
1秒前
guo发布了新的文献求助10
2秒前
nihao发布了新的文献求助10
2秒前
SRsora发布了新的文献求助10
2秒前
小二郎应助等待的鱼采纳,获得10
3秒前
pine发布了新的文献求助10
4秒前
浮游应助HTT采纳,获得10
4秒前
5秒前
7秒前
爆米花应助15348547697采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
11秒前
深度精分患者完成签到,获得积分10
12秒前
12秒前
难过安白发布了新的文献求助10
12秒前
歪咪发布了新的文献求助10
12秒前
wanci应助儒雅鸡采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
汉堡包应助riverflowing采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
上官若男应助发sci的女人采纳,获得30
15秒前
美好斓发布了新的文献求助50
15秒前
polite发布了新的文献求助10
16秒前
红豆面包发布了新的文献求助10
16秒前
充电宝应助积极的凌波采纳,获得10
18秒前
hewd3发布了新的文献求助10
18秒前
XiaoXiao发布了新的文献求助20
18秒前
kiki发布了新的文献求助30
19秒前
江江jiang完成签到 ,获得积分10
22秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886324
求助须知:如何正确求助?哪些是违规求助? 4171259
关于积分的说明 12944161
捐赠科研通 3931774
什么是DOI,文献DOI怎么找? 2157191
邀请新用户注册赠送积分活动 1175636
关于科研通互助平台的介绍 1080152