Image super-resolution: A comprehensive review, recent trends, challenges and applications

计算机科学 深度学习 水准点(测量) 人工智能 机器学习 图像处理 领域(数学) 标杆管理 图像质量 数据挖掘 数据科学 图像(数学) 数学 大地测量学 营销 纯数学 业务 地理
作者
Dawa Chyophel Lepcha,Bhawna Goyal,Ayush Dogra,Vishal Goyal
出处
期刊:Information Fusion [Elsevier]
卷期号:91: 230-260 被引量:226
标识
DOI:10.1016/j.inffus.2022.10.007
摘要

Super resolution (SR) is an eminent system in the field of computer vison and image processing to improve the visual perception of the poor-quality images. The key objective of image super resolution is to address the limitations of imaging systems mainly due to hardware problems and requirements for clinical processing of medical imaging using post-processing operations. Numerous super resolution strategies have been put-forward in the computer vision community to improve and achieve high-resolution images over the years. In the past few years, there has been a significant advancement in image super-resolution algorithms. This paper aims to provide the detailed survey on recent advancements in image super-resolution in terms of traditional, deep learning and the latest transformer-based algorithms. The in-depth taxonomy of broadly classified super-resolution techniques within these categories has been broadly discussed. An extensive survey has been carried out on deep learning techniques in terms of parameters, architecture, network complexity, depth, learning rate, framework, optimization, and loss function. Furthermore, we also address some of the significant parameters such as problem definition, evaluation metrics, publicly benchmarks datasets, loss functions and applications. In addition, we have performed an experimental analysis and comparison of various benchmark algorithms on publicly available datasets both qualitively and quantitively. Lastly, we conclude our survey by emphasizing some of the prospective future directions and open issues that the community need to address in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助爱笑纸鹤采纳,获得30
1秒前
刘文静发布了新的文献求助10
2秒前
hymmm发布了新的文献求助10
2秒前
怕黑三毒发布了新的文献求助10
3秒前
4秒前
CodeCraft应助joe采纳,获得10
4秒前
jiyue540完成签到,获得积分10
4秒前
fangyuan发布了新的文献求助10
4秒前
uniphoton完成签到,获得积分10
5秒前
666发布了新的文献求助10
5秒前
杨德帅发布了新的文献求助10
5秒前
李健应助昏睡的乐瑶采纳,获得10
5秒前
6秒前
6秒前
Donut完成签到,获得积分10
6秒前
三寸光阴一个鑫给荞麦婷子的求助进行了留言
8秒前
9秒前
欢呼晓博完成签到,获得积分10
10秒前
汉堡包应助曾曾曾采纳,获得10
10秒前
李健应助Donut采纳,获得10
10秒前
11秒前
考博圣体发布了新的文献求助10
12秒前
灵巧晓亦发布了新的文献求助10
12秒前
12秒前
13秒前
打打应助韩浩男采纳,获得10
14秒前
苯ben完成签到,获得积分10
15秒前
17秒前
18秒前
悠悠小土豆完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
20秒前
21秒前
liao应助可乐呀可乐采纳,获得10
22秒前
ZY发布了新的文献求助10
22秒前
杨德帅发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700