Detecting fluctuations in student engagement and retention during video lectures using electroencephalography

学生参与度 脑电图 心理学 知识保留 内容(测量理论) 数学教育 医学教育 神经科学 医学 数学分析 数学
作者
Ido Davidesco,Noah Glaser,Ian H. Stevenson,Or Dagan
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:54 (6): 1895-1916 被引量:1
标识
DOI:10.1111/bjet.13330
摘要

Abstract Video lectures are commonly used in online and flipped courses, but students often find it challenging to stay engaged and retain lecture content. The current study examined to what extent the power of electroencephalography (EEG) brain activity in the theta (4–7 Hz), alpha (8–12 Hz) and beta (13–20 Hz) bands can dynamically capture fluctuations of student engagement and retention throughout pre‐recorded lectures. EEG activity was recorded from 33 college students throughout four video‐based chemistry lectures. In‐video probes were used to assess both student engagement and content retention at random moments during the video. Our findings reveal that there are significant fluctuations in self‐reported engagement throughout pre‐recorded lectures. Further, among the three frequency bands that were tested, only alpha power closely tracked fluctuations in self‐reported engagement at the individual student level. In‐lecture fluctuations in engagement were associated with content retention, but content retention itself was not well captured by EEG activity in any of the frequency bands that were examined. These findings suggest that the design of video lectures should consider fluctuations in student engagement and potentially incorporate self‐reported and physiological indicators of engagement. Future research should further investigate how EEG and other physiological engagement indicators can be used in real time to personalize online instruction. Practitioner Notes What is already known about this topic Students often find it challenging to stay engaged during online lectures and retain lecture content. Measuring engagement and retention throughout an online lecture (rather than only at its end) is important but challenging because it requires the insertion of in‐lecture questions that interrupt the learning process. Electroencephalography (EEG) could potentially provide a continuous and implicit measure of engagement and retention throughout online lectures. What this paper adds Self‐reported engagement tends to gradually decrease throughout the duration of video lectures with substantial variation both within and between students. Fluctuations in student engagement are predictive of content retention throughout video lectures. EEG power in the alpha band (8–12 Hz) dynamically tracks fluctuations in student engagement. EEG power in the alpha band significantly predicts overall lecture engagement as well as learning confidence. However, EEG power might not be sensitive to variations in post‐lecture test performance. Implications for practice and/or policy The design of online lectures should take into consideration the dynamic and idiosyncratic nature of student engagement. In‐video self‐report probes and EEG power measures can be useful sources of information on students' level of engagement during online lectures. It should be further investigated whether EEG and other physiological indicators of engagement can be used in real time to personalize online instruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的苑博完成签到,获得积分10
1秒前
1秒前
充电宝应助努力的刘富贵采纳,获得10
1秒前
1秒前
积极安珊发布了新的文献求助10
2秒前
晓磊发布了新的文献求助10
5秒前
火星上雨珍完成签到,获得积分10
6秒前
7秒前
冯俊驰发布了新的文献求助10
8秒前
Caleb完成签到,获得积分10
8秒前
11秒前
x心无长夜完成签到,获得积分10
11秒前
ddl7完成签到,获得积分10
11秒前
Mars完成签到,获得积分10
12秒前
林乐发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
映寒完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
16秒前
活力的小小完成签到,获得积分10
16秒前
浮游应助ylf采纳,获得10
18秒前
pan完成签到,获得积分20
19秒前
花楹发布了新的文献求助10
19秒前
浮游应助Bressanone采纳,获得10
20秒前
20秒前
20秒前
11发布了新的文献求助10
20秒前
浮游应助水硕采纳,获得10
21秒前
唐少北完成签到,获得积分10
21秒前
dashen应助林乐采纳,获得10
24秒前
科研通AI2S应助ylf采纳,获得10
25秒前
wanci应助pan采纳,获得10
25秒前
Reset的鹿与森完成签到,获得积分10
25秒前
无情乐曲完成签到,获得积分10
26秒前
26秒前
谭朵朵完成签到,获得积分20
26秒前
李爱国应助东京芝士123采纳,获得10
26秒前
量子星尘发布了新的文献求助50
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
High-energy Combustion Agents of Organic Borohydrides 500
Practical Invisalign Mechanics: Crowding 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956403
求助须知:如何正确求助?哪些是违规求助? 4218191
关于积分的说明 13128103
捐赠科研通 4000942
什么是DOI,文献DOI怎么找? 2189525
邀请新用户注册赠送积分活动 1204554
关于科研通互助平台的介绍 1116359