Solar Radiation Forecasting Based on the Hybrid CNN-CatBoost Model

计算机科学 可再生能源 人工智能 机器学习 Boosting(机器学习) 风速 梯度升压 太阳能 深度学习 气象学 光伏系统 环境科学 随机森林 工程类 电气工程 物理
作者
Hyojeoung Kim,Sujin Park,Hee-Jun Park,Heung-Gu Son,Sahm Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 13492-13500
标识
DOI:10.1109/access.2023.3243252
摘要

The renewable energy industry is rapidly expanding due to environmental pollution from fossil fuels and continued price hikes. In particular, the solar energy sector accounts for about 48.7% of renewable energy, at the highest production ratio. Therefore, climate prediction is essential because solar power is affected by weather and climate change. However, solar radiation, which is most closely related to solar power, is not currently predicted by the Korea Meteorological Administration; therefore, solar radiation prediction technology is needed. In this study, we predict solar radiation using extra-atmospheric solar radiation and three weather variables: temperature, relative humidity, and total cloud volume. We compared the performance of single models of machine and deep learning in previous work. For the single-model comparison, we used boosting techniques, such as extreme gradient boosting and categorical boosting (CatBoost) in machine learning, and the recurrent neural network (RNN) family (long short-term memory and gated recurrent units). In this paper, we compare CatBoost (previously the best model) with CNN and present a CNN-CatBoost hybrid model prediction method that combines CatBoost in machine learning and CNN in deep learning for the best predictive performance for a single-model comparison. In addition, we checked the accuracy change when adding wind speed and precipitation to the hybrid model. The model that considers wind speed and precipitation improved at all but three (Gangneung, Suwon, and Cheongju) of the 18 locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不李解完成签到,获得积分10
刚刚
泽灵发布了新的文献求助10
刚刚
子啼当归完成签到,获得积分10
刚刚
刚刚
852应助Pyrene采纳,获得30
刚刚
刚刚
1秒前
1秒前
www应助咖啡不加糖采纳,获得10
1秒前
2秒前
cenlu完成签到,获得积分10
2秒前
王心心完成签到,获得积分10
2秒前
小太爷灬完成签到,获得积分10
2秒前
子啼当归发布了新的文献求助10
3秒前
朴实一一完成签到 ,获得积分10
3秒前
susong987完成签到,获得积分10
4秒前
fish发布了新的文献求助10
5秒前
Jasper发布了新的文献求助10
6秒前
椿·完成签到,获得积分10
7秒前
7秒前
奥利给发布了新的文献求助10
7秒前
享文完成签到,获得积分10
8秒前
YH应助徐小采纳,获得50
8秒前
lysh应助徐小采纳,获得40
8秒前
香蕉招牌完成签到,获得积分10
9秒前
干净水彤完成签到 ,获得积分10
10秒前
科研小菜鸡完成签到,获得积分20
10秒前
谦让慕青完成签到,获得积分10
12秒前
科研呀完成签到,获得积分10
12秒前
绿萝发布了新的文献求助30
14秒前
14秒前
Yapi发布了新的文献求助10
14秒前
15秒前
17秒前
17秒前
lynnnnnn发布了新的文献求助10
18秒前
19秒前
形心1431发布了新的文献求助10
19秒前
王小毛完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806