Solar Radiation Forecasting Based on the Hybrid CNN-CatBoost Model

计算机科学 可再生能源 人工智能 机器学习 Boosting(机器学习) 风速 梯度升压 太阳能 深度学习 气象学 光伏系统 环境科学 随机森林 工程类 电气工程 物理
作者
Hyojeoung Kim,Sujin Park,Hee-Jun Park,Heung-Gu Son,Sahm Kim
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 13492-13500
标识
DOI:10.1109/access.2023.3243252
摘要

The renewable energy industry is rapidly expanding due to environmental pollution from fossil fuels and continued price hikes. In particular, the solar energy sector accounts for about 48.7% of renewable energy, at the highest production ratio. Therefore, climate prediction is essential because solar power is affected by weather and climate change. However, solar radiation, which is most closely related to solar power, is not currently predicted by the Korea Meteorological Administration; therefore, solar radiation prediction technology is needed. In this study, we predict solar radiation using extra-atmospheric solar radiation and three weather variables: temperature, relative humidity, and total cloud volume. We compared the performance of single models of machine and deep learning in previous work. For the single-model comparison, we used boosting techniques, such as extreme gradient boosting and categorical boosting (CatBoost) in machine learning, and the recurrent neural network (RNN) family (long short-term memory and gated recurrent units). In this paper, we compare CatBoost (previously the best model) with CNN and present a CNN-CatBoost hybrid model prediction method that combines CatBoost in machine learning and CNN in deep learning for the best predictive performance for a single-model comparison. In addition, we checked the accuracy change when adding wind speed and precipitation to the hybrid model. The model that considers wind speed and precipitation improved at all but three (Gangneung, Suwon, and Cheongju) of the 18 locations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助cybbbbbb采纳,获得10
刚刚
果汁发布了新的文献求助10
刚刚
1秒前
1秒前
Lucas应助柚子采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
2秒前
爆米花应助咕咕咕采纳,获得10
2秒前
zxy发布了新的文献求助10
2秒前
3秒前
醉人的仔发布了新的文献求助10
3秒前
daguan完成签到,获得积分10
3秒前
桐桐应助nikai采纳,获得10
3秒前
4秒前
5秒前
123完成签到,获得积分10
5秒前
善良香岚发布了新的文献求助10
5秒前
6秒前
6秒前
444完成签到,获得积分10
6秒前
任一发布了新的文献求助30
6秒前
莉莉发布了新的文献求助10
7秒前
Zoe发布了新的文献求助10
7秒前
Hover完成签到,获得积分10
7秒前
自然的茉莉完成签到,获得积分10
8秒前
8秒前
Mandy完成签到,获得积分10
8秒前
9秒前
脑洞疼应助qaq采纳,获得10
9秒前
世界尽头发布了新的文献求助10
9秒前
小二郎应助科研民工采纳,获得10
9秒前
10秒前
无奈满天发布了新的文献求助10
10秒前
11秒前
MADKAI发布了新的文献求助10
11秒前
11秒前
贪玩丸子完成签到,获得积分10
11秒前
神勇的雅香应助liutaili采纳,获得10
12秒前
KSGGS完成签到,获得积分10
12秒前
YANG关注了科研通微信公众号
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759