亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Numerical study of droplet behavior passing through a constricted square channel

分手 下降(电信) 机械 毛细管数 物理 毛细管作用 格子Boltzmann方法 压力降 收缩 粘度 两相流 热力学 医学 电信 计算机科学 内分泌学
作者
Qingqing Gu,Jinggang Zhang,Haihu Liu,Lei Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:5
标识
DOI:10.1063/5.0160082
摘要

Snap-off is a crucial mechanism for drop breakup in multiphase flow within porous media. However, the systematic investigation of snap-off dynamics in constricted capillaries with varying pore and throat heights remains limited. In this study, we conducted three-dimensional simulations of drop behavior in a constricted square capillary with non-uniform depth, employing a color-gradient lattice Boltzmann model. Our analysis encompassed a comprehensive range of parameters, including geometrical factors and physical properties, such as capillary number, initial drop size, viscosity ratio, constriction length, and the presence of soluble surfactants. Depending on these parameters, the drop exhibited either breakup or deformation as it traversed the constriction. Upon snap-off occurrence, we quantified two significant aspects: the snap-off time t̂b, which represents the time interval between the drop front passing the constriction center and the snap-off event, and the volume of the first daughter drop V̂d generated by the breakup mechanism. Consistently, we observed a power-law relationship between t̂b and the capillary number Ca. However, the variation of V̂d with Ca exhibited a more complex behavior, influenced by additional factors, such as the viscosity ratio and the presence of surfactants, which break the linear increase in V̂d with Ca. Notably, the inclusion of surfactants is able to homogenize the volume of the first daughter drop. Through our comprehensive numerical study, we provide valuable insight into the snap-off process in constricted capillaries. This research contributes to the understanding of multiphase flow behavior and facilitates the optimization of processes involving snap-off in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实书包完成签到,获得积分10
2秒前
2秒前
Chris完成签到 ,获得积分10
5秒前
cy发布了新的文献求助10
9秒前
小蝶完成签到 ,获得积分10
12秒前
Eileen完成签到 ,获得积分0
13秒前
15秒前
娜行完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
弋鱼发布了新的文献求助10
21秒前
胡大笑哈哈哈完成签到 ,获得积分10
24秒前
26秒前
正直的山雁完成签到,获得积分10
27秒前
cy发布了新的文献求助10
31秒前
完美世界应助党弛采纳,获得10
34秒前
乐乐应助弋鱼采纳,获得10
37秒前
Zeno完成签到 ,获得积分10
38秒前
聪明勇敢有力气完成签到 ,获得积分10
42秒前
舒适的石头完成签到,获得积分10
48秒前
小夜子完成签到 ,获得积分10
49秒前
51秒前
qingcahng发布了新的文献求助30
55秒前
勤劳冰枫发布了新的文献求助10
1分钟前
Lucas应助党弛采纳,获得10
1分钟前
华仔应助qingcahng采纳,获得30
1分钟前
1分钟前
1分钟前
善学以致用应助西西采纳,获得10
1分钟前
充电宝应助amy采纳,获得10
1分钟前
1分钟前
1分钟前
zorro3574完成签到,获得积分10
1分钟前
amy发布了新的文献求助10
1分钟前
ZJ完成签到,获得积分10
1分钟前
xky200125完成签到 ,获得积分10
1分钟前
freeaway发布了新的文献求助10
1分钟前
辛勤三问完成签到,获得积分10
1分钟前
1分钟前
花花公子完成签到,获得积分10
1分钟前
freeaway完成签到,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657845
求助须知:如何正确求助?哪些是违规求助? 4812927
关于积分的说明 15080444
捐赠科研通 4816043
什么是DOI,文献DOI怎么找? 2577063
邀请新用户注册赠送积分活动 1532055
关于科研通互助平台的介绍 1490626