Numerical study of droplet behavior passing through a constricted square channel

分手 下降(电信) 机械 毛细管数 物理 毛细管作用 格子Boltzmann方法 压力降 收缩 粘度 两相流 热力学 医学 电信 计算机科学 内分泌学
作者
Qingqing Gu,Jinggang Zhang,Haihu Liu,Lei Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:5
标识
DOI:10.1063/5.0160082
摘要

Snap-off is a crucial mechanism for drop breakup in multiphase flow within porous media. However, the systematic investigation of snap-off dynamics in constricted capillaries with varying pore and throat heights remains limited. In this study, we conducted three-dimensional simulations of drop behavior in a constricted square capillary with non-uniform depth, employing a color-gradient lattice Boltzmann model. Our analysis encompassed a comprehensive range of parameters, including geometrical factors and physical properties, such as capillary number, initial drop size, viscosity ratio, constriction length, and the presence of soluble surfactants. Depending on these parameters, the drop exhibited either breakup or deformation as it traversed the constriction. Upon snap-off occurrence, we quantified two significant aspects: the snap-off time t̂b, which represents the time interval between the drop front passing the constriction center and the snap-off event, and the volume of the first daughter drop V̂d generated by the breakup mechanism. Consistently, we observed a power-law relationship between t̂b and the capillary number Ca. However, the variation of V̂d with Ca exhibited a more complex behavior, influenced by additional factors, such as the viscosity ratio and the presence of surfactants, which break the linear increase in V̂d with Ca. Notably, the inclusion of surfactants is able to homogenize the volume of the first daughter drop. Through our comprehensive numerical study, we provide valuable insight into the snap-off process in constricted capillaries. This research contributes to the understanding of multiphase flow behavior and facilitates the optimization of processes involving snap-off in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun完成签到,获得积分10
刚刚
能干大树发布了新的文献求助10
1秒前
马仕达发布了新的文献求助10
1秒前
1秒前
2秒前
Wang完成签到,获得积分10
2秒前
西瓜发布了新的文献求助10
3秒前
4秒前
李浩然发布了新的文献求助10
5秒前
6秒前
酷波er应助Jack80采纳,获得30
6秒前
晴雨发布了新的文献求助10
7秒前
7秒前
稳重的小刺猬完成签到,获得积分10
7秒前
Efaith完成签到,获得积分10
7秒前
77发布了新的文献求助10
9秒前
科研通AI6应助怕黑书翠采纳,获得10
10秒前
晨雾发布了新的文献求助10
11秒前
11秒前
爆米花应助李_Steven采纳,获得10
11秒前
斯文败类应助李_Steven采纳,获得10
11秒前
李健的小迷弟应助Efaith采纳,获得10
11秒前
科研通AI6应助李_Steven采纳,获得10
11秒前
完美世界应助李_Steven采纳,获得10
12秒前
14秒前
man完成签到,获得积分10
15秒前
wsj发布了新的文献求助30
15秒前
健壮的土豆完成签到 ,获得积分10
15秒前
chaxie完成签到,获得积分10
15秒前
赘婿应助libs采纳,获得10
15秒前
鳗鱼蜻蜓完成签到,获得积分20
16秒前
16秒前
小可爱完成签到 ,获得积分10
17秒前
斯文的莫英完成签到,获得积分10
17秒前
Orange应助李浩然采纳,获得10
17秒前
合适孤兰完成签到,获得积分20
17秒前
18秒前
ww发布了新的文献求助30
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672