Numerical study of droplet behavior passing through a constricted square channel

分手 下降(电信) 机械 毛细管数 物理 毛细管作用 格子Boltzmann方法 压力降 收缩 粘度 两相流 热力学 医学 电信 计算机科学 内分泌学
作者
Qingqing Gu,Jinggang Zhang,Haihu Liu,Lei Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:5
标识
DOI:10.1063/5.0160082
摘要

Snap-off is a crucial mechanism for drop breakup in multiphase flow within porous media. However, the systematic investigation of snap-off dynamics in constricted capillaries with varying pore and throat heights remains limited. In this study, we conducted three-dimensional simulations of drop behavior in a constricted square capillary with non-uniform depth, employing a color-gradient lattice Boltzmann model. Our analysis encompassed a comprehensive range of parameters, including geometrical factors and physical properties, such as capillary number, initial drop size, viscosity ratio, constriction length, and the presence of soluble surfactants. Depending on these parameters, the drop exhibited either breakup or deformation as it traversed the constriction. Upon snap-off occurrence, we quantified two significant aspects: the snap-off time t̂b, which represents the time interval between the drop front passing the constriction center and the snap-off event, and the volume of the first daughter drop V̂d generated by the breakup mechanism. Consistently, we observed a power-law relationship between t̂b and the capillary number Ca. However, the variation of V̂d with Ca exhibited a more complex behavior, influenced by additional factors, such as the viscosity ratio and the presence of surfactants, which break the linear increase in V̂d with Ca. Notably, the inclusion of surfactants is able to homogenize the volume of the first daughter drop. Through our comprehensive numerical study, we provide valuable insight into the snap-off process in constricted capillaries. This research contributes to the understanding of multiphase flow behavior and facilitates the optimization of processes involving snap-off in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ab完成签到,获得积分10
刚刚
华仔应助威士忌www采纳,获得10
刚刚
刘胜敏完成签到,获得积分20
刚刚
milayakiya完成签到,获得积分10
刚刚
SCI来完成签到 ,获得积分10
刚刚
天天快乐应助你想读博吗采纳,获得10
刚刚
鳗鱼绿兰发布了新的文献求助10
1秒前
11发布了新的文献求助10
2秒前
Akim应助优秀的晓丝采纳,获得10
3秒前
星辰大海应助小曦采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
鳄鱼应助Fengzhen007采纳,获得10
5秒前
5秒前
6秒前
蛙蛙完成签到,获得积分10
7秒前
LINHY完成签到,获得积分10
8秒前
pandarion发布了新的文献求助10
9秒前
9秒前
LKC完成签到 ,获得积分10
9秒前
ttt完成签到,获得积分10
10秒前
小徐发布了新的文献求助10
10秒前
jasmine完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
木乙完成签到,获得积分10
11秒前
12秒前
kai完成签到,获得积分10
12秒前
12秒前
刘胜敏发布了新的文献求助10
12秒前
13秒前
Orange应助大气靳采纳,获得10
14秒前
koi发布了新的文献求助10
15秒前
晒鱼干的大喵完成签到,获得积分20
15秒前
bbhk完成签到,获得积分10
16秒前
公龟应助科研通管家采纳,获得10
16秒前
Maestro_S应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
arniu2008应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718086
求助须知:如何正确求助?哪些是违规求助? 5250429
关于积分的说明 15284546
捐赠科研通 4868357
什么是DOI,文献DOI怎么找? 2614122
邀请新用户注册赠送积分活动 1564011
关于科研通互助平台的介绍 1521455