Numerical study of droplet behavior passing through a constricted square channel

分手 下降(电信) 机械 毛细管数 物理 毛细管作用 格子Boltzmann方法 压力降 收缩 粘度 两相流 跌落冲击 热力学 润湿 医学 电信 计算机科学 内分泌学
作者
Qingqing Gu,Jinggang Zhang,Haihu Liu,Lei Wu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:3
标识
DOI:10.1063/5.0160082
摘要

Snap-off is a crucial mechanism for drop breakup in multiphase flow within porous media. However, the systematic investigation of snap-off dynamics in constricted capillaries with varying pore and throat heights remains limited. In this study, we conducted three-dimensional simulations of drop behavior in a constricted square capillary with non-uniform depth, employing a color-gradient lattice Boltzmann model. Our analysis encompassed a comprehensive range of parameters, including geometrical factors and physical properties, such as capillary number, initial drop size, viscosity ratio, constriction length, and the presence of soluble surfactants. Depending on these parameters, the drop exhibited either breakup or deformation as it traversed the constriction. Upon snap-off occurrence, we quantified two significant aspects: the snap-off time t̂b, which represents the time interval between the drop front passing the constriction center and the snap-off event, and the volume of the first daughter drop V̂d generated by the breakup mechanism. Consistently, we observed a power-law relationship between t̂b and the capillary number Ca. However, the variation of V̂d with Ca exhibited a more complex behavior, influenced by additional factors, such as the viscosity ratio and the presence of surfactants, which break the linear increase in V̂d with Ca. Notably, the inclusion of surfactants is able to homogenize the volume of the first daughter drop. Through our comprehensive numerical study, we provide valuable insight into the snap-off process in constricted capillaries. This research contributes to the understanding of multiphase flow behavior and facilitates the optimization of processes involving snap-off in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Perrylin718采纳,获得10
1秒前
2秒前
2秒前
Mercury完成签到 ,获得积分10
2秒前
2秒前
wzppp完成签到,获得积分10
3秒前
特大包包完成签到,获得积分10
4秒前
rgaerva应助雪山飞龙采纳,获得10
5秒前
liuqiease完成签到,获得积分10
5秒前
hahahaweiwei发布了新的文献求助10
6秒前
领导范儿应助超级灰狼采纳,获得10
7秒前
TIATIA发布了新的文献求助10
7秒前
小聪完成签到 ,获得积分10
10秒前
Shit完成签到,获得积分10
10秒前
Hayat发布了新的文献求助10
12秒前
liuqiease发布了新的文献求助10
13秒前
13秒前
酷波er应助甜瓜不熟采纳,获得10
14秒前
科研通AI2S应助ZYC采纳,获得10
15秒前
16秒前
无花果应助毛线球球采纳,获得10
17秒前
17秒前
Jasper应助实验的兔纸采纳,获得10
20秒前
超级灰狼发布了新的文献求助10
21秒前
焦糖完成签到 ,获得积分10
23秒前
25秒前
细心怜寒发布了新的文献求助10
25秒前
yan123完成签到 ,获得积分10
25秒前
春天完成签到,获得积分10
27秒前
玥越完成签到,获得积分10
27秒前
28秒前
29秒前
郑盼秋完成签到,获得积分10
30秒前
777y完成签到,获得积分10
31秒前
31秒前
豆豆应助huco采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
qin希望应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825