[Synergistic Paths of Reduced Pollution and Carbon Emissions Based on Different Power Demands in China].

碳中和 环境科学 环境工程 电力工业 自然资源经济学 空气污染 温室气体 环境经济学 工程类 化学 经济 生态学 有机化学 电气工程 生物
作者
Mengyu Xiang,Shen Wang,Lian-Hong Lü,Nan Zhang,Zihan Bai
出处
期刊:PubMed 卷期号:44 (7): 3637-3648
标识
DOI:10.13227/j.hjkx.202207256
摘要

Nowadays, China is faced with two strategic tasks:improving ecological environmental quality and realizing carbon neutrality and carbon peaking. Synergy to reduce pollution and carbon emissions has become an inevitable choice for the comprehensive green transition of economic and social development in China. The electric power sector will play an important role in the transition process. Based on different power demand scenarios, a multi-objective model was constructed to achieve carbon peaking and carbon neutrality at a low cost, and the optimal path scheme of carbon emission reduction synergy was obtained. The results showed that under the premise of achieving carbon peaking and carbon neutrality as scheduled, pollution reduction and carbon reduction had good synergies, and their synergistic control could effectively facilitate the realization of the low-carbon transition. Optimizing the power generation structure of the electric power sector was the key measure to achieving the synergistic effect of pollution reduction and carbon reduction. During the study period, the proportion of thermal power decreased continuously, and the proportion of clean power exceeded 92.5%. The emissions of carbon dioxide and major air pollutants were significantly different under different power demands. Carbon dioxide emissions were most affected by power demand. The peak carbon dioxide emissions under low power demand, medium power demand, and high power demand were 9.416 billion, 10.409 billion, and 10.746 billion t, respectively. The emissions of sulfur dioxide, nitrogen oxide, and particulate matter also showed an increasing trend in the low power demand, medium power demand, and high power demand scenarios. The increase in power demand only increased the pressure of power generation structure adjustment within the electric power sector, without affecting the output and activity level of other sectors, that is, the pressure of emission reduction in the electric power sector caused by power demand did not show the trend of transmission between sectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yangkeke采纳,获得10
刚刚
桐桐应助在下观海丶采纳,获得10
2秒前
2秒前
3秒前
3秒前
墨兮完成签到,获得积分10
4秒前
5秒前
不会踢球的作家不是好大夫完成签到,获得积分10
6秒前
AIT完成签到,获得积分10
7秒前
安生完成签到 ,获得积分20
8秒前
梅伊斯完成签到 ,获得积分10
8秒前
单眼皮完成签到,获得积分10
8秒前
墨兮发布了新的文献求助10
8秒前
皛皛应助江城一霸采纳,获得10
9秒前
10秒前
10秒前
Akim应助宝贝充电站采纳,获得10
11秒前
Billy应助糊涂涂采纳,获得10
15秒前
悠然发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
康康发布了新的文献求助10
16秒前
Lucia发布了新的文献求助30
17秒前
欢呼的鲂完成签到,获得积分10
17秒前
皮卡皮卡丘完成签到,获得积分10
18秒前
18秒前
lynn_zhang完成签到,获得积分10
20秒前
20秒前
琪琪琪发布了新的文献求助10
21秒前
JamesPei应助爱幻想的青柠采纳,获得10
22秒前
Naveed完成签到,获得积分10
23秒前
赘婿应助Zx采纳,获得10
23秒前
24秒前
汤圆圆儿完成签到,获得积分10
25秒前
26秒前
小芙爱雪碧完成签到 ,获得积分10
28秒前
香飘飘关注了科研通微信公众号
30秒前
31秒前
脑洞疼应助中中采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870