亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Training Sample Augmentation for Enhancing Land Cover Change Detection Performance With Deep Learning Neural Network

计算机科学 人工神经网络 人工智能 样品(材料) 深度学习 块(置换群论) 相似性(几何) 机器学习 变更检测 模式识别(心理学) 图像(数学) 数学 几何学 色谱法 化学
作者
Zhiyong Lv,Haitao Huang,Weiwei Sun,Meng Jia,Jón Atli Benediktsson,Fengrui Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15128-15141 被引量:45
标识
DOI:10.1109/tnnls.2023.3282935
摘要

Labeled samples are important in achieving land cover change detection (LCCD) tasks via deep learning techniques with remote sensing images. However, labeling samples for change detection with bitemporal remote sensing images is labor-intensive and time-consuming. Moreover, manually labeling samples between bitemporal images requires professional knowledge for practitioners. To address this problem in this article, an iterative training sample augmentation (ITSA) strategy to couple with a deep learning neural network for improving LCCD performance is proposed here. In the proposed ITSA, we start by measuring the similarity between an initial sample and its four-quarter-overlapped neighboring blocks. If the similarity satisfies a predefined constraint, then a neighboring block will be selected as the potential sample. Next, a neural network is trained with renewed samples and used to predict an intermediate result. Finally, these operations are fused into an iterative algorithm to achieve the training and prediction of a neural network. The performance of the proposed ITSA strategy is verified with some widely used change detection deep learning networks using seven pairs of real remote sensing images. The excellent visual performance and quantitative comparisons from the experiments clearly indicate that detection accuracies of LCCD can be effectively improved when a deep learning network is coupled with the proposed ITSA. For example, compared with some state-of-the-art methods, the quantitative improvement is 0.38%–7.53% in terms of overall accuracy. Moreover, the improvement is robust, generic to both homogeneous and heterogeneous images, and universally adaptive to various neural networks of LCCD. The code will be available at https://github.com/ImgSciGroup/ITSA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一米六关注了科研通微信公众号
5秒前
8秒前
11秒前
洋葱发布了新的文献求助10
17秒前
一米六发布了新的文献求助10
23秒前
慕青应助牛油果采纳,获得10
26秒前
只谈风月完成签到,获得积分10
29秒前
腼腆的寒风完成签到 ,获得积分10
30秒前
33秒前
科研大王完成签到,获得积分10
33秒前
leoskrrr完成签到,获得积分10
37秒前
牛油果发布了新的文献求助10
38秒前
Han完成签到 ,获得积分10
48秒前
顾矜应助乐求知采纳,获得10
1分钟前
1分钟前
1分钟前
浮游漂漂应助科研通管家采纳,获得30
1分钟前
Xx完成签到 ,获得积分10
1分钟前
踏实的绣连完成签到 ,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
yr应助牛油果采纳,获得10
1分钟前
1分钟前
1分钟前
summer完成签到,获得积分20
1分钟前
1分钟前
dad0ng发布了新的文献求助10
1分钟前
1分钟前
小二郎应助dad0ng采纳,获得10
1分钟前
南风南下完成签到 ,获得积分10
1分钟前
Yu发布了新的文献求助10
1分钟前
zyyyy发布了新的文献求助10
2分钟前
2分钟前
jami-yu发布了新的文献求助10
2分钟前
jewel9完成签到,获得积分10
2分钟前
在水一方应助Yu采纳,获得10
2分钟前
明天一定早睡关注了科研通微信公众号
2分钟前
2分钟前
研友_LaOyQZ完成签到,获得积分10
2分钟前
A_123应助坦率的尔冬采纳,获得10
2分钟前
jami-yu完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763871
求助须知:如何正确求助?哪些是违规求助? 5545305
关于积分的说明 15405600
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635548
邀请新用户注册赠送积分活动 1583722
关于科研通互助平台的介绍 1538812