Iterative Training Sample Augmentation for Enhancing Land Cover Change Detection Performance With Deep Learning Neural Network

计算机科学 人工神经网络 人工智能 样品(材料) 深度学习 块(置换群论) 相似性(几何) 机器学习 变更检测 模式识别(心理学) 图像(数学) 数学 几何学 色谱法 化学
作者
Zhiyong Lv,Haitao Huang,Weiwei Sun,Meng Jia,Jón Atli Benediktsson,Fengrui Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15128-15141 被引量:45
标识
DOI:10.1109/tnnls.2023.3282935
摘要

Labeled samples are important in achieving land cover change detection (LCCD) tasks via deep learning techniques with remote sensing images. However, labeling samples for change detection with bitemporal remote sensing images is labor-intensive and time-consuming. Moreover, manually labeling samples between bitemporal images requires professional knowledge for practitioners. To address this problem in this article, an iterative training sample augmentation (ITSA) strategy to couple with a deep learning neural network for improving LCCD performance is proposed here. In the proposed ITSA, we start by measuring the similarity between an initial sample and its four-quarter-overlapped neighboring blocks. If the similarity satisfies a predefined constraint, then a neighboring block will be selected as the potential sample. Next, a neural network is trained with renewed samples and used to predict an intermediate result. Finally, these operations are fused into an iterative algorithm to achieve the training and prediction of a neural network. The performance of the proposed ITSA strategy is verified with some widely used change detection deep learning networks using seven pairs of real remote sensing images. The excellent visual performance and quantitative comparisons from the experiments clearly indicate that detection accuracies of LCCD can be effectively improved when a deep learning network is coupled with the proposed ITSA. For example, compared with some state-of-the-art methods, the quantitative improvement is 0.38%–7.53% in terms of overall accuracy. Moreover, the improvement is robust, generic to both homogeneous and heterogeneous images, and universally adaptive to various neural networks of LCCD. The code will be available at https://github.com/ImgSciGroup/ITSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞云完成签到,获得积分10
刚刚
曾经如是完成签到,获得积分10
2秒前
4秒前
霜糖完成签到,获得积分10
5秒前
7秒前
高大厉完成签到 ,获得积分10
8秒前
科研雪完成签到,获得积分10
9秒前
冷漠的布丁完成签到,获得积分10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得20
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
xiao发布了新的文献求助10
10秒前
彩色尔珍发布了新的文献求助10
11秒前
11秒前
今后应助平常寄翠采纳,获得10
15秒前
科研通AI6应助科研雪采纳,获得10
16秒前
梓泽丘墟发布了新的文献求助100
16秒前
打打应助7676采纳,获得10
18秒前
llz发布了新的文献求助10
18秒前
19秒前
19秒前
充电宝应助xiao采纳,获得100
19秒前
20秒前
拼搏书琴完成签到 ,获得积分10
20秒前
ooooo完成签到,获得积分10
21秒前
腼腆的又槐完成签到,获得积分10
21秒前
JIA发布了新的文献求助50
21秒前
lilili应助刘老哥6采纳,获得10
22秒前
勤恳逍遥完成签到,获得积分10
23秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
innyjiang完成签到,获得积分10
24秒前
周舟发布了新的文献求助10
24秒前
霸气的梦露完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419502
求助须知:如何正确求助?哪些是违规求助? 4534740
关于积分的说明 14146552
捐赠科研通 4451384
什么是DOI,文献DOI怎么找? 2441744
邀请新用户注册赠送积分活动 1433305
关于科研通互助平台的介绍 1410587