亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative Training Sample Augmentation for Enhancing Land Cover Change Detection Performance With Deep Learning Neural Network

计算机科学 人工神经网络 人工智能 样品(材料) 深度学习 块(置换群论) 相似性(几何) 机器学习 变更检测 模式识别(心理学) 图像(数学) 数学 化学 几何学 色谱法
作者
Zhiyong Lv,Haitao Huang,Weiwei Sun,Meng Jia,Jón Atli Benediktsson,Fengrui Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15128-15141 被引量:45
标识
DOI:10.1109/tnnls.2023.3282935
摘要

Labeled samples are important in achieving land cover change detection (LCCD) tasks via deep learning techniques with remote sensing images. However, labeling samples for change detection with bitemporal remote sensing images is labor-intensive and time-consuming. Moreover, manually labeling samples between bitemporal images requires professional knowledge for practitioners. To address this problem in this article, an iterative training sample augmentation (ITSA) strategy to couple with a deep learning neural network for improving LCCD performance is proposed here. In the proposed ITSA, we start by measuring the similarity between an initial sample and its four-quarter-overlapped neighboring blocks. If the similarity satisfies a predefined constraint, then a neighboring block will be selected as the potential sample. Next, a neural network is trained with renewed samples and used to predict an intermediate result. Finally, these operations are fused into an iterative algorithm to achieve the training and prediction of a neural network. The performance of the proposed ITSA strategy is verified with some widely used change detection deep learning networks using seven pairs of real remote sensing images. The excellent visual performance and quantitative comparisons from the experiments clearly indicate that detection accuracies of LCCD can be effectively improved when a deep learning network is coupled with the proposed ITSA. For example, compared with some state-of-the-art methods, the quantitative improvement is 0.38%–7.53% in terms of overall accuracy. Moreover, the improvement is robust, generic to both homogeneous and heterogeneous images, and universally adaptive to various neural networks of LCCD. The code will be available at https://github.com/ImgSciGroup/ITSA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daguan完成签到,获得积分10
19秒前
星辰大海应助独特的秋采纳,获得10
24秒前
33秒前
11发布了新的文献求助10
40秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
汉堡包应助科研通管家采纳,获得10
42秒前
54秒前
1分钟前
1分钟前
离雨完成签到,获得积分20
1分钟前
shennie发布了新的文献求助10
1分钟前
1分钟前
andrele应助离雨采纳,获得10
1分钟前
1分钟前
独特的秋发布了新的文献求助10
1分钟前
sandaomi发布了新的文献求助10
1分钟前
Owen应助_ban采纳,获得10
1分钟前
1分钟前
梅者如西发布了新的文献求助10
2分钟前
传奇3应助梅者如西采纳,获得10
2分钟前
Wen929完成签到 ,获得积分10
2分钟前
魔法甜甜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
魔法甜甜发布了新的文献求助10
2分钟前
_ban发布了新的文献求助10
2分钟前
Sep_w发布了新的文献求助10
2分钟前
烟花应助阿凝采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
Tuan发布了新的文献求助10
2分钟前
拉长的灵阳完成签到,获得积分10
2分钟前
3分钟前
Sep_w完成签到,获得积分10
3分钟前
3分钟前
lr完成签到 ,获得积分10
3分钟前
3分钟前
qian发布了新的文献求助10
3分钟前
3分钟前
情怀应助张子捷采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595721
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818167
捐赠科研通 4651975
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469764