已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Iterative Training Sample Augmentation for Enhancing Land Cover Change Detection Performance With Deep Learning Neural Network

计算机科学 人工神经网络 人工智能 样品(材料) 深度学习 块(置换群论) 相似性(几何) 机器学习 变更检测 模式识别(心理学) 图像(数学) 数学 化学 几何学 色谱法
作者
Zhiyong Lv,Haitao Huang,Weiwei Sun,Meng Jia,Jón Atli Benediktsson,Fengrui Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15128-15141 被引量:45
标识
DOI:10.1109/tnnls.2023.3282935
摘要

Labeled samples are important in achieving land cover change detection (LCCD) tasks via deep learning techniques with remote sensing images. However, labeling samples for change detection with bitemporal remote sensing images is labor-intensive and time-consuming. Moreover, manually labeling samples between bitemporal images requires professional knowledge for practitioners. To address this problem in this article, an iterative training sample augmentation (ITSA) strategy to couple with a deep learning neural network for improving LCCD performance is proposed here. In the proposed ITSA, we start by measuring the similarity between an initial sample and its four-quarter-overlapped neighboring blocks. If the similarity satisfies a predefined constraint, then a neighboring block will be selected as the potential sample. Next, a neural network is trained with renewed samples and used to predict an intermediate result. Finally, these operations are fused into an iterative algorithm to achieve the training and prediction of a neural network. The performance of the proposed ITSA strategy is verified with some widely used change detection deep learning networks using seven pairs of real remote sensing images. The excellent visual performance and quantitative comparisons from the experiments clearly indicate that detection accuracies of LCCD can be effectively improved when a deep learning network is coupled with the proposed ITSA. For example, compared with some state-of-the-art methods, the quantitative improvement is 0.38%–7.53% in terms of overall accuracy. Moreover, the improvement is robust, generic to both homogeneous and heterogeneous images, and universally adaptive to various neural networks of LCCD. The code will be available at https://github.com/ImgSciGroup/ITSA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研都不研了完成签到 ,获得积分10
刚刚
Lucas应助白菜也挺贵采纳,获得30
1秒前
Wangyingjie5完成签到,获得积分10
2秒前
董秋白完成签到,获得积分10
3秒前
王俊杰发布了新的文献求助20
4秒前
刘振宇关注了科研通微信公众号
4秒前
ax完成签到,获得积分10
4秒前
5秒前
唉唉唉发布了新的文献求助10
5秒前
5秒前
new完成签到,获得积分10
5秒前
汉堡包应助余红采纳,获得10
6秒前
leezz完成签到,获得积分10
6秒前
科研通AI6应助Wangyingjie5采纳,获得10
7秒前
8秒前
在水一方应助longlong采纳,获得10
9秒前
ax发布了新的文献求助10
10秒前
九九完成签到,获得积分10
11秒前
12秒前
影1发布了新的文献求助10
12秒前
小二郎应助Zyc采纳,获得10
13秒前
汤317完成签到,获得积分10
13秒前
13秒前
瀛瀛完成签到 ,获得积分0
14秒前
14秒前
吉里巴发布了新的文献求助10
15秒前
igigi发布了新的文献求助10
15秒前
Hale完成签到,获得积分0
15秒前
15秒前
九九发布了新的文献求助10
16秒前
轻松面包完成签到,获得积分10
17秒前
暗中讨饭完成签到,获得积分10
19秒前
Da You发布了新的文献求助10
19秒前
21秒前
longlong完成签到,获得积分20
23秒前
23秒前
Zyc发布了新的文献求助10
26秒前
QQQ发布了新的文献求助10
26秒前
27秒前
网络复杂发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663851
求助须知:如何正确求助?哪些是违规求助? 4853565
关于积分的说明 15106071
捐赠科研通 4822104
什么是DOI,文献DOI怎么找? 2581216
邀请新用户注册赠送积分活动 1535412
关于科研通互助平台的介绍 1493740