已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Iterative Training Sample Augmentation for Enhancing Land Cover Change Detection Performance With Deep Learning Neural Network

计算机科学 人工神经网络 人工智能 样品(材料) 深度学习 块(置换群论) 相似性(几何) 机器学习 变更检测 模式识别(心理学) 图像(数学) 数学 几何学 色谱法 化学
作者
Zhiyong Lv,Haitao Huang,Weiwei Sun,Meng Jia,Jón Atli Benediktsson,Fengrui Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:41
标识
DOI:10.1109/tnnls.2023.3282935
摘要

Labeled samples are important in achieving land cover change detection (LCCD) tasks via deep learning techniques with remote sensing images. However, labeling samples for change detection with bitemporal remote sensing images is labor-intensive and time-consuming. Moreover, manually labeling samples between bitemporal images requires professional knowledge for practitioners. To address this problem in this article, an iterative training sample augmentation (ITSA) strategy to couple with a deep learning neural network for improving LCCD performance is proposed here. In the proposed ITSA, we start by measuring the similarity between an initial sample and its four-quarter-overlapped neighboring blocks. If the similarity satisfies a predefined constraint, then a neighboring block will be selected as the potential sample. Next, a neural network is trained with renewed samples and used to predict an intermediate result. Finally, these operations are fused into an iterative algorithm to achieve the training and prediction of a neural network. The performance of the proposed ITSA strategy is verified with some widely used change detection deep learning networks using seven pairs of real remote sensing images. The excellent visual performance and quantitative comparisons from the experiments clearly indicate that detection accuracies of LCCD can be effectively improved when a deep learning network is coupled with the proposed ITSA. For example, compared with some state-of-the-art methods, the quantitative improvement is 0.38%-7.53% in terms of overall accuracy. Moreover, the improvement is robust, generic to both homogeneous and heterogeneous images, and universally adaptive to various neural networks of LCCD. The code will be available at https://github.com/ImgSciGroup/ITSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whiteside发布了新的文献求助10
刚刚
smalls川完成签到,获得积分10
1秒前
wwdd完成签到,获得积分10
3秒前
痴情的幻儿完成签到 ,获得积分10
3秒前
3秒前
zyxyy完成签到,获得积分10
4秒前
刻苦的Z完成签到,获得积分10
4秒前
Tireastani发布了新的文献求助10
4秒前
5秒前
6秒前
明明发布了新的文献求助10
6秒前
ShiYuesjw完成签到 ,获得积分10
7秒前
许七安发布了新的文献求助10
8秒前
火枪手发布了新的文献求助10
9秒前
13秒前
SkylynnSun完成签到,获得积分10
13秒前
13秒前
拖拖沓沓ttt完成签到,获得积分10
14秒前
14秒前
14秒前
快乐紫青完成签到 ,获得积分10
15秒前
15秒前
15秒前
MQL完成签到 ,获得积分10
17秒前
17秒前
18秒前
丁可越发布了新的文献求助10
19秒前
大气寄松发布了新的文献求助10
19秒前
小叶发布了新的文献求助10
19秒前
小叶发布了新的文献求助10
19秒前
小叶发布了新的文献求助10
20秒前
小叶发布了新的文献求助10
20秒前
小叶发布了新的文献求助10
20秒前
SciGPT应助知性的乐荷采纳,获得50
20秒前
21秒前
YIX应助prof.zhang采纳,获得10
21秒前
Yang应助明明采纳,获得10
22秒前
脑洞疼应助喜悦秋白采纳,获得30
24秒前
24秒前
烟花应助威武书桃采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234378
求助须知:如何正确求助?哪些是违规求助? 2880736
关于积分的说明 8216789
捐赠科研通 2548319
什么是DOI,文献DOI怎么找? 1377665
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623304