材料科学
假电容器
双金属片
法拉第效率
异质结
电极
超级电容器
纳米颗粒
氧化物
电导率
化学工程
电化学
电阻率和电导率
纳米复合材料
纳米技术
金属
分析化学(期刊)
光电子学
物理化学
冶金
化学
工程类
电气工程
色谱法
作者
Amar M. Patil,Sunil Moon,Arti A. Jadhav,Jongwoo Hong,Keonwook Kang,Seong Chan Jun
标识
DOI:10.1002/adfm.202305264
摘要
Abstract The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion‐incorporated cation‐exchanged bimetallic sulfide/metal oxide heterostructure (Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y ) is synthesized using a two‐step hydrothermal method. The coordination bond formation and Ag nanoparticle (NP) incorporation improve the electrical conductivity and adhesion of the heterostructure and reduce its interface resistance and volume expansion throughout the charge/discharge cycles. Density functional theory investigations indicate that the remarkable interlayer and interparticle conductivities of the heterostructure resulting from Ag doping have changed its electronic states, leading to an enhanced electrical conductivity. The optimized electrode has an excellent specific capacity (213.6 mA h g −1 at 1 A g −1 ) and can maintain 93.2% capacity retention with excellent Coulombic efficiency over 20 000 charge/discharge cycles. A flexible solid‐state extrinsic pseudocapacitor (EPSC) is fabricated using Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y and Ti 3 C 2 T X electrodes. The EPSC has specific and volumetric capacitances of 259 F g −1 and 2.7 F cm −3 at 0.7 A g −1 , respectively, an energy density of 80.9 Wh kg −1 at 525 W kg −1 , and a capacity retention of 92.8% over 5000 charge/discharge cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI