Fast and accurate assessment of depression based on voice acoustic features: a cross-sectional and longitudinal study

萧条(经济学) 相关性 哈姆德 听力学 人工神经网络 相关系数 心理学 医学 精神科 计算机科学 人工智能 焦虑 机器学习 数学 几何学 经济 宏观经济学
作者
Yang Wang,Lijuan Liang,Zhongguo Zhang,Xiao Xu,Rongxun Liu,Hanzheng Fang,Ran Zhang,Yange Wei,Zhongchun Liu,Rongxin Zhu,Xizhe Zhang,Fei Wang
出处
期刊:Frontiers in Psychiatry [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fpsyt.2023.1195276
摘要

Background Depression is a widespread mental disorder that affects a significant portion of the population. However, the assessment of depression is often subjective, relying on standard questions or interviews. Acoustic features have been suggested as a reliable and objective alternative for depression assessment. Therefore, in this study, we aim to identify and explore voice acoustic features that can effectively and rapidly predict the severity of depression, as well as investigate the potential correlation between specific treatment options and voice acoustic features. Methods We utilized voice acoustic features correlated with depression scores to train a prediction model based on artificial neural network. Leave-one-out cross-validation was performed to evaluate the performance of the model. We also conducted a longitudinal study to analyze the correlation between the improvement of depression and changes in voice acoustic features after an Internet-based cognitive-behavioral therapy (ICBT) program consisting of 12 sessions. Results Our study showed that the neural network model trained based on the 30 voice acoustic features significantly correlated with HAMD scores can accurately predict the severity of depression with an absolute mean error of 3.137 and a correlation coefficient of 0.684. Furthermore, four out of the 30 features significantly decreased after ICBT, indicating their potential correlation with specific treatment options and significant improvement in depression ( p < 0.05). Conclusion Voice acoustic features can effectively and rapidly predict the severity of depression, providing a low-cost and efficient method for screening patients with depression on a large scale. Our study also identified potential acoustic features that may be significantly related to specific treatment options for depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助姜起蛟采纳,获得10
1秒前
2秒前
思源应助典雅的俊驰采纳,获得10
2秒前
一一应助路奇k采纳,获得10
2秒前
桃青完成签到,获得积分10
3秒前
3秒前
上官若男应助黄沙漠采纳,获得10
3秒前
爆米花应助黄沙漠采纳,获得10
3秒前
wanci应助黄沙漠采纳,获得10
3秒前
3秒前
桐桐应助黄沙漠采纳,获得10
3秒前
李健的小迷弟应助黄沙漠采纳,获得10
3秒前
Owen应助黄沙漠采纳,获得10
3秒前
4秒前
在水一方应助燃之一手采纳,获得10
4秒前
4秒前
希望天下0贩的0应助nothing采纳,获得10
5秒前
无餍应助Mingda采纳,获得10
5秒前
7秒前
7秒前
KK完成签到,获得积分10
8秒前
8秒前
英姑应助不会取名字采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
小马甲应助H_采纳,获得10
10秒前
Tiffany发布了新的文献求助10
10秒前
打打应助zyy采纳,获得30
10秒前
伶俐的若剑完成签到,获得积分10
11秒前
11秒前
九月发布了新的文献求助10
11秒前
小二郎应助sss采纳,获得10
11秒前
蹦擦擦发布了新的文献求助10
11秒前
11秒前
12秒前
奋斗秋玲完成签到,获得积分10
12秒前
霸气梦菲发布了新的文献求助10
13秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470653
求助须知:如何正确求助?哪些是违规求助? 3063626
关于积分的说明 9084762
捐赠科研通 2754142
什么是DOI,文献DOI怎么找? 1511256
邀请新用户注册赠送积分活动 698359
科研通“疑难数据库(出版商)”最低求助积分说明 698253